当前位置:主页 > 教案 >

数学六年级上册教案(精选20篇)

  • 教案
  • 2024-06-20 12:20
  • admin

数学六年级上册教案(精选20篇)

作为一名优秀的教育工作者,很有必要精心设计一份教案,教案是教学活动的依据,有着重要的地位。教案应该怎么写才好呢?以下是小编整理的数学六年级上册教案,欢迎大家借鉴与参考,希望对大家有所帮助。

数学六年级上册教案 篇1

设计说明

根据本节课的内容进行如下设计:

1、创设有效情境,自然引入新课。

首先利用教材中的情境,让学生交流分橘子的方法,从而引出平均分的方法不公平,而按照学生人数的比来分橘子比较合理,将学生的思路自然而然地引入到本节课,即按一定的比进行分配的问题的探讨中来。

2、给学生提供了充分思考和活动的空间。

在新知的探究过程中,给学生提供充分的体验空间。让学生利用手中的小棒代替橘子,鼓励他们实际分配,并做好分配的记录,使学生在这一操作过程中进一步体会比的意义。有了上面的实际操作经验,在解决把140个橘子按3∶2进行分配时,给学生提供了充分的探究和交流的空间。在学生探究出不同的解决问题的策略后,组织他们将不同的策略进行比较,发现其中的共同点,让学生在比较的基础上选择自己认为合理的策略解决问题。

课前准备

教师准备PPT课件

学生准备小棒

教学过程

导入新课

1、观察情境图,获取图中的信息。(课件出示)

从这幅图中你知道了哪些信息?(指名回答)

2、提出问题。

把这些橘子分给1班和2班,怎样分合理?

3、讨论分配方案。

请同学们想一想,说一说你的分法。

(1)学生思考,同桌交流。

(2)指名汇报,说明理由。

预设

生1:可以每个班各分一半。

生2:按1班和2班人数的比来分配。

引导学生说出两个班的人数不一样,平均分看似公平,其实并不公平,而根据两个班人数的`比3∶2来分比较合理。

4、引入课题。

像这样,把一个数量按一定的比进行分配的问题在生活中常常会遇到,今天我们就来共同学习这类问题的解决方法。(板书课题:比的应用)

设计意图:通过具体情境,使学生体会到数学与生活的密切联系,激发学生的学习兴趣,引导学生分析情境中的数学信息,为后面的动手操作、分析推导解题方法奠定基础。

探究新知

(一)初探新知。

要把这筐橘子按3∶2分给1班和2班的小朋友,应该怎样分?我们用小棒代替橘子分一分。

1、小组交流后学生动手分配。

引导学生明确1班占3份,2班占2份。

2、记录分配的过程。

引导学生在记录过程中发现6∶4,30∶20……都等于3∶2,为寻找解决问题的策略奠定基础。

3、各小组汇报,说说自己的分法。

引导学生不断调整每次分配的数量,明确1班占3份,2班占2份。

4、在这次分小棒的过程中,你有什么发现?说说感受。

(每次分的小棒的根数比都是3∶2)

设计意图:在分小棒的操作活动中,进一步体会比的意义,在观察记录的过程中发现6∶4,30∶20……都等于3∶2,巩固了化简比的内容。另外,学生不断地调整每次分配的数量,不断地产生新的解题策略,理解按一定的比进行分配的意义。

数学六年级上册教案 篇2

教学内容:

义务教育新课程六年级小学数学例1、及相应的做一做。

学情分析:

学生已经认识了周长的含义,并学习了长方形正方形的周长的计算。教学圆的周长可通过化曲为直的方法进行教学。并且知道圆是日常生活中常见的图形,可通过直观演示.实际操作帮助学生解决问题。但圆是曲线图形,是一种新出现的平面几何图形,这在平面图形的周长计算教学上又深了一层。特别是圆周率这个概念也较为抽象,探索圆周率的含义以及推导圆周长计算公式是教学难点,学生不易理解。

教学目标:

1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

教学重点:

推导圆的周长的计算公式,准确计算圆的周长。

教学难点:

理解圆周率的意义。

教具准备:

圆片、铁圈、绳子、直尺。

教学方法:

观察、演示、小组合作交流

教学过程:

一、把准认知冲突,激发学习愿望。

1、问题从情境中引入:兔子和乌龟进行赛跑比赛,(如图)兔子绕着直径为1KM的圆跑一圈,乌龟绕着边长1KM的正方形跑一圈,你认为它们谁跑的路程长?正方形的周长是多少呢?圆的周长又该怎么计算呢?今天我们就一起来学习圆的周长。(引导揭示课题:圆的周长)

2、化曲为直,测量周长。

(1)(出示铁环)什么是圆的周长呢?围成圆的曲线的长叫做圆的周长,怎样测量圆的周长呢?讨论:把铁环拉直后测量——“剪开拉直”。

(2)出示水杯(指底面),你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

讨论:

方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

方法2:将圆在直尺上滚动一周,测出周长。(板书:“绕线法”和“滚动法”)

(3)学校外面的操场,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

二、经历探究全程,验证猜想发现。

㈠圆的周长与直径有关系。

1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

3、总结:圆的直径的长短,决定了圆周长的长短。

㈡圆的周长与直径的倍数关系。

1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)

小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

2、验证:(小组合作)用绕线法或滚动法的方法,测量出圆的周长,求出周长与直径的.比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

三、感受数学文化,激发情感教育。

1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

2、介绍计算机计算圆周率的情况。

3、教学圆周率:π≈3.14。

四、归纳圆的周长的计算公式。

学生讨论:(1)求圆的周长必须知道哪些条件?

(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

生回答,教师板书:C=πd或C=2πr

利用圆的周长计算公式,计算下面各圆的周长

1.d=4cm2.r=1.5m

五、应用圆周长计算公式,解决简单的实际问题。

多媒体出示例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)指名读题,自己列式解答(1生板演)

六、巩固新知。

1、请学生说说怎样计算圆的周长?用字母又怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

2、尝试练习:

①.有一个半径是5米的圆形花坛,在它周围每隔1.57米放一盆花,一共要准备多少盆花?

②.已知一棵大树的周长是9.42米,你能算出它的直径吗?

3、完成判断选择题。

七、小结:

这节课你有什么收获?

八、布置作业:

练习二十五3、4、5题。

板书设计

圆的周长

围成圆的曲线的长,叫做圆的周长。

圆的周长和直径的比值,叫做圆周率。π≈3.14

c=πd或c=2πr

例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)

c=πd

=3.14×0.95

=2.983

≈2.98(米)

答:这张圆桌面的周长是2.98米。

圆形物

周长(C)(毫米)

直径?(d)(毫米)

周长与直径的比值(保留两位小数)

圆的周长与直径的关系实验记录单

数学六年级上册教案 篇3

教学目标:

1、借助具体事例,初步学会设计简单的调查表,认识复式条形统计图,会用简单复式统计图来描述数据。

2、经历数学的收集、整理、表达、描述和分析的全过程,体验复式统计图在比较、描述数据中的作用,了解统计图画法不同对数据描述和解释的影响。

3、在统计的过程中,初步形成统计意识,发展统计观念。

4、感受统计在现实生活中的作用,增强学习统计知识的自觉性和主动性。

5、通过参与“保护眼睛”的统计活动,增强保护眼睛的意识,养成良好的用眼习惯。

教学重点:

经历数学的收集、整理、表达、描述和分析的全过程,体验复式统计图在比较、描述数据中的作用,了解统计图画法不同对数据描述和解释的影响。

教学难点:

经历数学的收集、整理、表达、描述和分析的全过程,体验复式统计图在比较、描述数据中的作用。

教学方法:

自主探究、合作交流教具多媒体课件。

教学过程:

一、解读情境,提出问题

谈话:同学们,目前我国中小学生近视患病率快速上升,这是家长和社会非常关注的问题。请看来自《中国青少年研究中心》的研究报告(多媒体出示118页情境图)。读一读,从这份报告中你都知道了什么,能提出什么问题?(引导学生提出“我们这些中小学生患近视的年龄是不是提前了呢?”)

二、合作探究,解决问题

(一)调查搜集数据,学习调查表。

1、独立思考。

谈话:怎样才能知道中小学生患近视的年龄是不是提前了呢?(引导学生明白要知道是不是提前了就要进行比较)要比较就需要调查大量的数据,为了记录数据我们就要制作调查表,想一想,怎样设计调查表?

2、班内交流。

谈话:你打算怎样设计调查表?(引导学生明确调查的对象和调查的内容)(出示调查表)这样制作可以吗?为了便于我们今天的研究我提前对45名学生和家长进行了调查。请看屏幕(补充数据)。

(二)整理数据,学习复式条形统计图。

1、尝试比较,提出问题。

谈话:比一比两张调查表,看看学生患近视的年龄是不是提前了?(引导学生体会看原始的调查表数据太乱,不便于比较)

谈话:原始的调查表太乱,怎么样整理这些数据才能便于比较呢?先自己想想,再与同位说说。

谈话:你打算怎样整理数据?(统计表,统计图)

[设计意图:组织学生尝试比较,目的是引导学生在比较的过程中,体会调查表中饿数据太乱,不便于直接比较,从而感受整理数据的必要性。]

2、独立思考,探索方法。

谈话:老师这里有一个统计表,咱们一起来整理整理好吗?(师生共同整理填写统计表)根据这个表格中的`数据比一比,中小学生患近视的年龄是不是提前了呢?(引导学生根据统计表中的数据比较、分析,作出判断)

谈话:刚才我们是用统计表进行整理的,用统计图怎样整理更便于我们比较观察呢?先自己想一想,有了方法开始整理,整理完了和你的同位交流交流。

3、班内交流,学习方法。

谈话:中小学生患近视的年龄是不是提前了?你是怎样整理的?(学生可能出现单式和复式两种不同的整理方法,应着重引导学生在交流比较的过程中,认识到复式条形统计图的特点)

4、比较解释,优化方法。

谈话:刚才大家用两种方法进行了整理,想一想,要解决这个问题用哪种更便于比较?为什么?

5、查漏补缺,完善方法。(根据学生制图的情况,补充完整,完善方法。)

[设计意图:让学生独立思考,探索方法,合作交流,学习方法,比较评价,优化方法。有利于学生经历整理数据、描述数据和分析数据、作出决策的过程,自主地学习复式条形统计图的作用和制作方法。]

三、自主练习,应用拓展

1、课本自主练习,“我学会了吗”的练习六。

复习目的:

1、使学生进一你好理解分数乘法的意义,掌握分数乘法的计算法则,并能正确、熟练地进行计算。

2、使学生进一你好理解整数运算定律同样适用于分数,并能应用这些运算定律进行简便计算。

3、使学生进一你好理解倒数的意义并掌握求倒数的方法。

复习过程:

(一)导入:板书:整理和复习

(二)整理。

1、启发学生回忆整数乘法的意义:5个12是多少?怎样列式。

使学生明确:5×12或12×5

求几个相同加数的和的简便运算。

2、启发学生回忆本单元学过的分数乘法的意义:

使学生明确:8/15×5,5个8/15的和,

8/15+8/15+8/15+8/15+8/15=8/15×5

分数乘以整(鼓浪屿在哪里个城市?鼓浪屿位于厦门,因岛上的鼓浪石而得名,与厦门大学隔海相望。鼓浪屿代表景点有:日光岩、菽庄花园、皓月园、毓园、鼓浪石等等。)数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

3、一个数乘以分数的意义,就是求这个数的几分之几是多少?

使学生明确:24×3/8就是求24个3/8是多少,7/18×9/14就是求7/18的9/14是多少,是对整数乘法的的扩展。

练习:练习七的的内容及练习十一的的“做一做”,集体订正。

(2)完成教材练习十一的练习十一的练习十一的的是多少?

(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

3、你能把口头列式计算中的),边复习边整理。

老师带着学生看书整理和复习比例的意义。

(2)复习比例的意义、各部分名称、比和比例的区别。

说一说:什么是比?什么是比例?比和比例有什么联系和区别?

比:两个数相除又叫做这两个数的比

比例:表示两个比相等的式子叫做比例。

2、看书整理复习正比例和反比例

(1)让学生看书,尝试整理本节知识。

3、整理比例的应用让学生看书,尝试整理本节知识,老师个别辅导。

4、汇报分享交流整理的成果。

注意事项:

1、将一个图形按一定的比放大和缩小时要注意什么?教师强调:图形的放大和缩小都是把图形的边长按一定比例进行放大和缩小。

2、用比例知识解决问题有哪些步骤?

三、巩固练习

1、下面各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来。

2、判断两种相关联的量是否成比例?成什么比例?说明理由。

(1)总路程一定,速度和时间。

(2)总页数一定,看了的页数和剩下的页数。

(3)购买铅笔的单价一定,总价和数量。

数学六年级上册教案 篇11

教材分析

日常生活和生产劳动经常应用百分数,如用百分数表示一个数量比另一个数量多或少的关系,又如利息与纳税的计算、折扣的设计与计算等。应用百分数解决问题可以列式计算,也可以列方程解答。这些都是本单元的教学内容。

全单元的教学内容比较多,编排6道例题、四个练习以及全单元的整理与练习,大致分成五段教学。

学生分析

在此学习内容之前,学生已经学习了百分数的定义和读写、百分数和分数、小数的互化、百分数的简单应用、运用方程解决简单的`百分数问题。在此基础上,进一步学习百分数的应用。

教学内容

小学数学实验教材(北师大版)六年级上册的内容和“练一练”“练一练”情境图,学生观察找出数学信息。

“练一练”“练一练”“练一练”“练一练”例4、练一练,练习七含有圆的组合图形的面积。

教学目标:

1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

2、通过自主合作,培养学生独立思考、合作探究的意识。

3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

教学重难点:组合图形的认识及面积计算、图形分析。

教具学具准备:多媒体课件、各种基本图形纸片。

教学设计:

⊙创设情境,认识圆环

1.师:我们来欣赏一组美丽的图片。

课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……

2.同学们,你们从图中发现了什么?(它们都是环形的)

3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?

(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)

设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。

⊙探索交流,解决问题

1.画一画,剪一剪,发现环形特点。

(1)画一画。

让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的'圆。

(学生按照要求画圆)

(2)剪一剪。

指导学生先剪下所画的大圆,再剪下所画的小圆。

问:剩下的部分是什么图形?(环形)

师:我们也称它为圆环。

(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?

生明确:圆环是从外圆中去掉一个内圆得到的。

(4)借助图示认识圆环的各部分名称。

你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)

①外圆:又名大圆,它的半径用R表示。

②内圆:又名小圆,它的半径用r表示。

③环宽:指外圆半径和内圆半径相差的宽度。

2.探究圆环面积的计算方法。

(1)小组讨论,怎样求圆环的面积?

(2)汇报讨论结果。

(3)小结:环形的面积=外圆面积-内圆面积。

设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。

3.课件出示例2。

光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

(1)学生读题。

观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

(2)学生试做,指生板演。

(3)交流算法,学生将列式板书:

解法一

外圆的面积:πR2=3。14×62

=3。14×36

=113。04(cm2)

内圆的面积:πr2=3。14×22

=3。14×4

=12。56(cm2)

圆环的面积:πR2-πr2=113。04-12。56

=100。48(cm2)

解法二

π×(R2-r2)=3。14×(62-22)=100。48(cm2)

答:圆环的面积是100。48cm2。

(4)比较两种算法的不同。

(5)小结:圆环的面积计算公式:S=πR2-πr2或

S=π×(R2-r2)(板书公式)

(6)讨论。

知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)

①知道内、外圆的面积,可以计算圆环的面积。

S环=S外圆-S内圆

②知道内、外圆的半径,可以计算圆环的面积。

S环=πR2-πr2或S环=π×(R2-r2)

③知道内、外圆的直径,可以计算圆环的面积。

④知道内、外圆的周长,也可以计算圆环的面积。

S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2

或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]

⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。

S环=π×[(r+环宽)2-r2]

或S环=π×[R2-(R-环宽)2]

……

设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。

⊙巩固练习,拓展提高

1.完成教材68页1题。

学生独立完成,然后在班内说一说解题思路。

2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?

3.已知阴影部分的面积是75cm2,求圆环的面积。

[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]

设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。

⊙反思体验,总结提高

这节课我们学习了什么?你有哪些收获?还有什么问题?

⊙布置作业,巩固应用

1.完成教材72页8题。

2.找一些关于环形的资料读一读。

板书设计

圆环的面积

圆环面积=外圆面积-内圆面积

S环=πR2-πr2或S环=π×(R2-r2)

数学六年级上册教案 篇18

教学内容:

比例尺(课本48-49页例1,“做一做”,练习八的内容,看图,看文字,重点看各色方框里的内容并思考

(1)什么是比例尺?求比例尺的方法是什么?

(2)看课本48页右图下面的线段比例尺,想:怎样把它转化成数值比例尺?

(3)比例尺一般写成什么形式?

师:生认真看书自学,师巡视,督促人人认真看书。

2、议一议(合作交流)

主要交流自学探究中的问题,先对子之间互说,最后小组内交流,统一答案或记录下没有解决的问题,以备下一步的展示。

3、说一说(汇报展示)

以小组为单位进行自学成果的汇报。针对自学探究中的问题,可以口答、板演、或提出问题。组间可以补充或质疑,教师尽可能的引导或解疑。

4、小结归纳

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺

比例尺实际距离

图上距离

求比例尺时,需要注意单位的统一,同时,比例尺是一个比,不能带单位名称。为了计算方便,通常把比例尺写成前项或后项是1的比。

师:通过刚才的展示,老师发现各个小组的自学效果的确很好。到底同学们运用知识解决实际问题的能力怎么样呢?下面请看检测题,比一比谁发言最积极,谁解决问题的能力最强!

四、巩固提升

要求

1、独立完成,对子讨论。

学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论。

2、组内交流,整合答案。

学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。

3、分工合作,板演展示。

学法指导:由组长分工:板演、检查、预展(讲解者)

4、汇报讲解,补充评价。

学法指导:各个小组按抽签顺序讲解展示,讲解时可以组内补充,也可其他组补充或质疑。展示后,其他组或教师给予评价。

操作指导:教师在预展时巡视各小组,指导并帮助小组快速分工,让每个学生尽快参与其中,没有得到展示机会的小组安排课后自改或小组对改。

五、全课总结

同学们,今天我们学习了比例尺,求比例尺的方法是什么呢?

首先根据比例尺的意义确定比的前项和后项,写出比,图上距离和实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

下面我们就用今天所学的知识来做作业,比谁的课堂作业做得又对又快,字体又工整。

六、当堂训练

1、必做题:课本练习八的1、2、3题

2、选做题:一张精密仪器图纸,用8厘米的线段表示实际的8毫米长,则这幅图的比例尺是多少?

3、拓展题:在一幅比例尺是1︰2000000的地图上,量得甲乙两地相距8厘米。如果在比例尺是1︰8000000的地图上,这两地相距多少厘米?

板书设计:

比例尺

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺

比例尺实际距离

图上距离

数学六年级上册教案 篇19

设计说明

列方程解答含有两个未知数的问题属于较复杂的方程问题之一,主要引导学生掌握根据两个未知数的和或差与倍数所形成的数量关系进行列方程解决的方法。针对本节课的教学重点和难点做了以下设计:

1.本设计遵循学生的认知规律,尊重学生已有经验,从学生熟悉的篮球比赛情境入手,既激发了学生学习的兴趣,又为新课的展开奠定良好的情感基础。

2.教学中紧紧抓住“下半场得分只有上半场的一半”这个已知条件,引导学生自主理解、分析问题,理清题中的数量关系,根据数量关系列出不同的方程并解答,培养学生思维的发散性。

3.在解题的过程中放手让学生独立思考并解答,选择解题最佳方案。给学生创造一个轻松愉快的'学习氛围,培养学生分析问题和解决问题的能力。

课前准备

教师准备 PPT课件 学情检测卡

教学过程

⊙创设情境,引入新课

师:六(1)班和六(2)举行了一场别开生面的篮球赛。比赛结束后,老师根据比赛得分给六(1)班的全体同学出了一道数学题,你们想知道是什么题目吗?

生:想。

师:好,那下面我们就一起到六(1)班看看吧。(板书课题)

设计意图:通过创设学生感兴趣的篮球比赛情境,激发学生学习的欲望,为新课的展开做好铺垫。

⊙师生合作,探究新知

1.课件出示教材41页例6情境图。

六(1)班在与六(2)班的篮球赛中,六(1)班全场共得了42分。其中下半场得分只有上半场的一半。上半场和下半场各得多少分?

2.获取数学信息。

请同学们认真读题,找出已知条件和所求问题。

(已知条件:全场共得了42分,下半场得分只有上半场的一半。所求问题:上半场和下半场各得多少分?)

3.理解题中存在的数量关系。

(1)理解“下半场得分只有上半场的一半”的意思。

①学生小组讨论,理解语句的意思。

②汇报讨论结果。

预设

生1:下半场得分=上半场得分×。

生2:上半场得分是下半场得分的2倍,即上半场得分=下半场得分×2。

(2)根据已知条件列出等量关系式。(学生独立思考后汇报)

关系式1:上半场得分+上半场得分×=全场得分。

关系式2:下半场得分×2+下半场得分=全场得分。

4.根据等量关系式列方程解答。

(1)根据数量关系,学生尝试解答。

(2)汇报。

方法一 根据关系式1解答。

解:设上半场得x分。

x+x=42

x=42

x=42

x=28

28×=14(分)

方法二 根据关系式2解答。

解:设下半场得x分。

2x+x=42

3x=42

x=14

42-14=28(分)

(3)检验。

①师:怎样才能知道自己的结果是否正确呢?

(引导学生说出不同的检验方法)

预设

生1:把上半场和下半场的得分加起来,如果正好是全场的42分,说明正确。

生2:用下半场的得分除以上半场的得分,如果正好是上半场的一半,说明正确。

……

②学生按照检验方法,检验自己的计算结果。

数学六年级上册教案 篇20

教学内容:

xx版义务教育教科书《数学》六年级上册68~69页例1、练一练,练习十一,再求问题的结果。

2、做练一练第2题。

独立完成,可以先画图思考,再列式解答。

提问:求黑兔多少只的数量关系式是怎样的?和同桌说一说,再解答。

3、做练一练的第3题

指出:这题中这个分数表示的数量和要求的问题不对应,所以可以根据总数量和已知的分数求出的对应数量,再

求出问题的结果。

四、全课小结,揭示课题。

通过这节课的学习,你有什么收获?在解题时要注意什么?

结合学生的回答,揭题板题。

五、课堂作业

【数学六年级上册教案】相关文章:

数学六年级上册教案01-02

数学上册教案01-15

六年级上册数学比的教案01-07

六年级上册数学比教案01-07

小学数学六年级上册教案01-12

小学数学六年级上册教案09-14

数学六年级上册《圆的周长》教案08-27

数学六年级上册教案15篇01-02

数学六年级上册教案(15篇)01-02

下一篇:没有了

猜你喜欢