当前位置:主页 > 文学 >

数学名人的故事(精选34篇)

  • 文学
  • 2024-02-22 21:27
  • admin

故事是在在现实认知观的基础上,对其描写成非常态性现象。是文学体裁的一种,侧重于事件发展过程的描述。强调情节的生动性和连贯性,较适于口头讲述。下面为大家带来数学名人的故事,快来看看吧。

数学名人的故事 篇1

中国南北朝时代南朝数学家、天文学家、物理学家。范阳遒(今河北涞水)人

祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的.历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。

公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些飞外历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。

尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。

祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。

数学名人的故事 篇2

杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。

他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。

杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。他在《续古摘奇算法》中介绍了各种形式的 纵横图 及有关的构造方法,同时 垛积术 是杨辉继沈括 隙积术 后,关于高阶等差级数的'研究。杨辉在 纂类 中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的 习算纲目 是中国数学教育史上的重要文献。

数学名人的故事 篇3

布列斯·巴斯卡是法国著名的数学家与思想家。他在短暂的一生中,取得了多方面的成就:少年时代是个数学家,青年时代是个发明家,中年以后则以深刻的思想启迪后人。他是个天才,11岁即发表论文,16岁提出了著名的“巴斯卡六边形定理”,17岁发明了计算器,23岁测试了大气压力……但他又是个多灾多难的“病秧子”。到了晚年,甚至陷入宗教与迷信而不可自拔。

巴斯卡1623年6月19日出生于法国奥佛涅省的克勒蒙城,他的家庭是开明而富有的`,但巴斯卡的人生却是很悲惨的。他1岁时就患肺结核与软骨病,九死一生幸存下来,终身生活在病魔的阴影中。从18岁起,他几乎没有一天是快乐无忧的。正当24岁的青春韶华,他却因中风而瘫痪。肠结核、头痛症、下肢麻痹更兼神经衰弱,一起向他袭来。经过反复调养、多方锻炼,虽能倚杖而行,但再也恢复不了健康了。他的病极其复杂,象他的思想一样,时时处在神秘之中。法国医生梅特里曾概括其多种病症而命名为“巴斯卡幻象”,认为巴斯卡“一方面是伟大人物,另方面是半疯子。”

然而,巴斯卡正是在病痛的折磨下,靠坚强的意志研究数学难题而忘却了痛苦,他在疾病与天才中并驾齐驱,成为17世纪最伟大的科学家与最深刻的思想家之一。

他原本不相信命运,但后来却陷入了宗教的迷雾中了。1654年,在巴斯卡的生活史上,是个划时代的年头,他在这年写下了《罪人的皈依》一文,从而开始了心理学与神学的探索,他开始对宗教的狂热探究。1654年11月23日,巴斯卡乘马车遇险,两匹马均死于巴黎塞纳河中,而他本人却奇迹般地幸免于难。当天晚上,巴斯卡心潮澎湃,获得天启,写下了祷文:“正直的天父,这世界从不知道你,但我已知道你。愿我再不离开你。”此后,他便迁入罗雅尔修道院,终其余生,在激烈的斗争与痛苦中追求宇宙与人生的真理。

1662年6月,多病的巴斯卡又患上了剧烈的腹纹痛病,病情急剧恶化。

7月,病危症状日益显着。他的忏悔神父与他进行了一次著名的谈话,传闻巴斯卡对以往的过激言论有所悔悟。8月19日,一代天才停止了呼吸。他的面容被拓印下来,以便日后塑造雕像。两天后,他被安葬在巴黎圣艾基纳教堂。这位数学家的故事会随他的作品被世人铭记。

数学名人的故事 篇4

张衡是我国汉朝时期一位非常出名的大文豪,与司马相如、杨雄和班固并称汉赋四大家。张衡的《二京赋》、《思玄赋》和《归田赋》等都是流传千年的文学佳品,至今仍被无数的文人墨客把玩赏析。

有的人觉得,文科和理科往往难以并重,那么张衡可能会打破这些人的'固有印象。张衡不仅在文学上展现了非凡的成就,天文学、地理学和数学上,张衡也取得了丰硕的成果,成为一代数学家。

张衡自小兴趣广泛,自学《五经》,贯通六艺,而且喜欢研究算学、天文、地理和机械制造等。在青年时期,他的志趣大半在诗歌、辞赋、散文上,他才高于世,却没有骄傲之情。

《后汉书》提到,张衡曾写过一部《算罔论》,可惜这本书在唐代失传了。我们从《九章算术·少广》章,小高斯就举手报告老师说:“老师,这道题我算完了。”

“算完了?”白尔脱没好气地挥挥手,“你算得这样快,准会算错,再算算看吧~!”

“不会错的,我检查过了,还验算了一遍。”高斯理直气壮的说。

白尔脱走到高斯座位前,拿起他的练习本一看,答案是“5050”,显然一点不错。

“你是怎么算的?”白尔脱惊奇地问道。

高斯一板一眼地回答说:“我发现这个题目一头一尾挨次的两个数相加,都是101,总共50个101,所以答案就是50x101=5050。”

“真妙啊!”白尔脱兴奋地拍了一下桌子,接着大声地对全体同学说:“真没想到,你们当中竟会出现数学神童!”

从此,白尔脱完全改变了对农村孩子高斯地看法。他尤其喜欢高斯灵活聪明、刻苦学习地态度,在学习中,他经常对高斯进行个别辅导。

在白尔脱地精心培养下,高斯对数学地兴趣越来越浓,造诣越来越深,十七岁时,他就发现了数论中的二次互反律。

数学名人的故事 篇17

阿契塔(Archytas) 希腊数学家。公元前约420年生于意大利塔伦通(现塔兰托);公元前约350年卒。 阿契塔是毕达哥拉斯学派的成员,居住在塔伦通,那里是当时保留到最后的一个纺织毕达哥拉斯学派的活动中心。阿契塔象公元前四世纪的许多希腊学者那样,致力于说服希腊各城邦联合起来反对日效力增长的外来势力。可是,同所有其他希腊学者一样,他也失败了。希腊人坚持彼此之间的自相残杀,直到被马其顿所征服。

阿契塔的洒趣在于希腊的三大问题之一——立方倍积,即给定一个立方体,仅用圆规和直尺作另一个立方体,使这个立方体的体积是给定的立方体的两倍。后来发现,在所指定的条件下,这个问题是不可解,但是在经过一番努力之后,阿契塔发现了与比例中项(即在两个外项之间插入的一些线或数值)有关的`一些定理,他使用比立方倍积问题所给条件的严格要求要自由一引起的工具,通过精巧的三维构体这个问题。他是试图把纯粹的技艺应用于力学的边还有他的评论。他利用公务之余钻研数学,并且成果累累。后世数学家从他的诸多猜想和大胆创造中受益匪浅,赞誉他为“业余数学家之王”。

费马对数学的贡献包括:与笛卡尔共同创立了解析几何;创造了作曲线切线的方法,被微积分发明人之一牛顿奉为微积分的思想先驱;通过提出有价值的猜想,指明了关于整数的理论——数论的发展方向。他还研究了掷骰子的输赢规律,从而成为古典概率论的奠基人之一。

数学名人的故事 篇25

陈景润出生在福建省福州市的闽侯镇,他的父亲陈元俊是一个邮电局的小职员。

陈景润到了上学的年龄,父母给他找了一所离家近的小学,送他去读书。在所有的学科中,他特别喜欢数学,只要遨游在代数、几何的题海中,他就能够忘却所有的烦恼。

陈景润平时少言寡语,但非常勤学好问,他总是主动向老师请教问题或借阅参考书。

一个中午,最后一节课下了,陈景润走出教室,回家吃饭。他从书包里拿出一本刚从老师那儿借来的教学书,边走边看。书上的内容像电影一样一幕幕地闪现,陈景润就像一个饥饿的人扑到面包上,大口大口地吞吃着精神的食粮。

他只顾专心致志地看书,不知不觉偏离了方向,朝着路边的小树走去。只听“哎哟”一声,他撞到了树上。

抗日战争爆发初期,陈景润刚刚升入初中,中学里的一位数学老师使陈景润的人生之路发生了根本的改变。这位老师就是曾经任清华大学航空系主任的`沈元老师。有一次,沈元老师向学生讲了个数学难题,叫“哥德巴赫猜想”,学生们“叽叽喳喳”地议论起来。

沈元老师最后又说了一句话:自然科学的皇后是数学,数学的皇冠是数论,而哥德巴赫猜想则是皇冠上的一颗明珠!

陈景润听了这句话后,内心不禁为之一震:“哥德巴赫猜想、数学皇冠上的明珠,我能摘下这颗明珠吗?”

1973年2月,陈景润的关于(1+2)简化证明的论文终于公开发表了!“陈氏定理”立即在世界数学界引起轰动,专家们给予他极高的评价。

数学名人的故事 篇26

我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。

有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫人说,今天是您六十大寿,特来表示祝贺。”吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。”来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的`生日也记不住?

其实,吴文俊对日期的记忆力是很强的。他在将近花甲之年的时候,又先攻了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。

数学名人的故事 篇27

祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以 径一周三 做为圆周率,这就是“古率”。后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一。

直到三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。

祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。

祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的.“割圆术”方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做“祖率”。

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:“幂势既同,则积不容异。”意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为“祖暅原理”。

数学名人的故事 篇28

十九世纪初,一个早晨,英国一家酿酒厂的老板带着他的两个儿子,来到著名科学家道尔顿的家里,恳求道尔顿教这两个孩子学习科学知识。那个年龄较小、机智活泼的孩子,名叫詹姆斯·焦耳。

道尔顿是位严格的老师。开始,他并没有给孩子们讲授物理和化学的原理,而是讲了许多高深的数学知识。

“讲这些枯燥的数学有什么用?若能讲讲那些有趣的电学实验该多好!”焦耳有些不耐烦了。

好不容易盼到了放假,焦耳和哥哥一同去旅游。他找来一匹跛马,让哥哥牵着,自己却悄悄躲在后面,用伏打电池将电流通到马身上,想要试验动物对电流的反应。结果,跛马受到电击狂跳起来,差一点出了事。

他们又划船来到青山环绕的湖上。焦耳决定试试这里的回声有多大。他在枪口里塞入大量的火药,然后扣动扳机。谁知枪声大作,“”地一声,喷出一股长长的火焰,烧光了焦耳的眉毛,还把哥哥吓得差点落进水里。

后来,他们又兴致勃勃地爬上一座高山。只见远处浓云低垂,隐约能看到闪电,然后才听到滚滚的雷声。这是怎么回事?焦耳用怀表认真记录下从闪电开始到听到雷声的时间。

开学后,焦耳把自己做的试验都告诉了老师。道尔顿笑了,说:“这些实验中,只有最后一次你做对了。”他谆谆告诫焦耳:人们只要掌握了光的.速度和声的速度,就可以从看到闪电到听到雷声的时间,推断出闪电发生在相距多远的地方。

焦耳听了很惊异:“难道枯燥的数学中会藏着这么多学问?”道尔顿举了许多例子开导他,真正的科学实验是不能只观察现象的,它必须有精密的测量,并学会用数学知识从测量的数据中总结出规律。

焦耳顿开茅塞,从此,他开始注重理论学习和精密的测量了。经过这样不懈地努力,他终于成为世界闻名的物理学家。

数学名人的故事 篇29

开普勒是一位天才的几何学家,他把他的数学能力强化了人们对太阳系的认识。开普勒曾经是伟大的天文观测家的第谷·布拉赫助手,而布拉赫拥有一些在当时最细致的'行星运动的记录资料。通过分析这些资料,开普勒能够确定和改进哥白尼的太阳系观点:行星围着太阳转,而转动的时间是基于椭圆形状的行星轨道用并用精确定义的数学定律来描述的。

开普勒定律是一个伟大发现,因为它是对物理过程精确且简洁描述。像行星绕太阳的轨道这样,我们世界的事物遵循这各种各样的规律。20世纪的物理学家维格纳有一个优美的表述,“数学无理由的有效性”。开普勒定律就是这种无理由的有效性的早期例子。

开普勒定律也为牛顿发现他的牛顿运动律提供了条件,尤其是万有引力定律。开普勒对天体力学的贡献让美国国家航空航天局(NASA)将研究太阳系以外的行星的项目以他的名字命名,叫做开普勒任务。

数学名人的故事 篇30

泊松(Poisson S.-D,B.,1781.6.21~1840.4.25)是法国数学家,曾任过欧洲许多国家科学院的院士,在积分理论、微分方程、概率论、级数理论等方面都有过较大的贡献。

据说泊松在青年时代研究过一个有趣的数学游戏:

某人有12品脱啤酒一瓶(品脱是英容量单位,1品脱=0.568升),想从中倒出6品脱。但是他没有6品脱的容器,只有一个8品脱的'容器和一个5品脱的容器。怎样的倒法才能使5品脱的容器中恰好装好了6品脱啤酒?

不容易想到的是,对这个数学游戏的研究竟决定了泊松一生的道路。从此,他决心要当一位数学家。由于他的刻苦努力,他终于实现了自己的愿望。

这个数学游戏有两种不同的解法,如下面的两个表所示。

第一种解法:12 12 4 4 9 9 1 1 6 8 0 8 3 3 0 8 6 6 5 0 0 5 0 3 3 5 0

第二种解法:12 12 4 0 8 8 3 3 11 11 6 6 8 0 8 8 0 4 4 8 0 1 1 6 5 0 0 4 4 0 5 1 1 0 5 0

下面两个题目是与泊松青年时代研究过的题目类型相同的;希望青少年朋友研究后也会有人决心当数学家。

一个桶装满10斤油,另外有一个能装3斤油的空桶和一个能装7斤油的空桶。试用这三个桶把10斤油平分为两份。

有大、中、小三个酒桶,分别能装19斤、13斤、7斤酒。现在大桶空着,另外两个桶都装满了酒。试问:用这三个桶倒几次可以把全部酒平分成两份?

数学名人的故事 篇31

莱布尼兹(1646-1716)是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。

莱布尼兹出生于德国东部莱比锡的一个书香之家,父亲是莱比锡大学的道德哲学教授,母亲出生在一个教授家庭。莱布尼兹的父亲在他年仅6岁时便去世了,给他留下了丰富的藏书。莱布尼兹因此得以广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,还广泛阅读了培根、开普勒、伽利略、等人的著作,并对他们的着述进行深入的思考和评价。在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。

20岁时,莱布尼兹转入阿尔特道夫大学。这一年,他发表了第一篇数学论文《论组合的`艺术》。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。从1671年开始,他利用外交活动开拓了与外界的广泛联系,尤以通信作为他获取外界信息、与人进行思想交流的一种主要方式。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作。1673年,莱布尼兹被推荐为英国皇家学会会员。此时,他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1676年,他到汉诺威公爵府担任法律顾问兼图书馆馆长。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。

1716年11月14日,莱布尼兹在汉诺威逝世,终年70岁。

数学名人的故事 篇32

这个暑假,我读了《数学家的故事》,一共有上下两册,讲了许多数学家的成材故事。

给我印象最深的是爱米诺特和笛卡儿的故事。爱米诺特是第一位女数学家,她敢于冲破世俗的观念礼教,义无返顾地进入大学学习她喜爱的数学。她一开始只是一个不受重视的旁听生,但她却比其他的正式学生更认真地学习,她珍惜这样学习的机会。后来她在不懈的努力下,成为了这所大学的学生,她更用功了,她把学习看作得来不易的果实,所以她更用心地品尝收获的喜悦了。最后,她终于成功了,她着书立说,为她所热爱的数学事业做出了巨大的贡献,她也实现了她自己一生的理想。

笛卡儿原来是一名军人,一直都很喜欢数学。一次他受伤后住在医院,某一天他正在思考一个数学问题时,无意间看见天花板上有一只苍蝇在横梁上跳来跳去,他突然灵光一闪,想到了他一直思考的“数”与“形”的问题。在当时的数学界,数与形的完全分离一直是一个困扰许多数学家的问题,而笛卡儿不放过一点点的机会,在医院里不懈努力,终于解决了这个问题,使数与形很好地结合了起来,使人们学习数学更轻松、更愉快了。

另外,我还读了华罗庚、苏步青等数学家的故事,这些故事无一例外地都写着两个字:勤奋。这些数学家都能在艰苦的环境中不放弃自己的理想,不忘记自己的事业,兀兀穷年,最终成就了一番事业。我从这些故事中看到了他们的努力,也看到了他们的成功。读了这些故事,我明白了许多,其中最重要的是,我发现勤奋有一种巨大的、不可估量的力量,虽然从前我也知道,许多名人的成功都来自勤奋,但是看了这套《数学家的故事》后,我更清晰地看到了这一点。其实先天的`资质固然重要,但是后天的学习和自己的勤奋努力才是最重要的,它们是成功的必备条件,只要勤奋,许多不足都可以弥补,许多缺点都可以改变。相信自己的判断,义无返顾地走下去,只要认定了一件事,就要坚持做下去,直到做出成果,做出收获。

我想,不仅仅是学习数学,做其他任何事都是一样,要有恒心,要坚持,能够在自己选择的路上一直走下去,一直努力,最后才会达到梦想的终点。

数学名人的故事 篇33

寒假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。

祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后10年,《大明历》才颁布实行。

读了这个故事,使我对祖冲之坚贞不屈的.精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开“坚持”两个字。不由地,我想到了许多人,有文化名人、爱国将士,他们何尝没有这样的精神呢!

读《数学家的故事》让我更加喜欢数学,更让我飞外了许多道理。其实,学习数学并不难,数学王子高斯曾有三大秘诀:1.善于观察2.善于动手3.善于思考。其实,只要我们喜爱数学,就一定能学好数学!如果我们像数学先辈们那样努力,数学一定又能有新的突破!

数学名人的故事 篇34

《数学家的故事》讲述了许多位数学家小时候的故事。其中有两篇给我印象最深,分别是《小欧拉智改羊圈》和《数学神童希帕蒂亚》。

《小欧拉智改羊圈》讲述了欧拉爸爸设计了一个长40米,宽15米的长方形羊圈,施工过程中发现围羊圈的材料少了10米。父亲在增加材料和缩小羊圈之间难以取舍时,小欧拉想出了办法,他将长方形羊圈的长缩短了15米,宽延长了10米。经过这样一改,原来长方形的羊圈变成了一个边长25米的正方形。而正方形的周长是25×4=100米,正好比原来长方形的周长(15+40)×2=110米少了10米,这样材料刚好够用。同时正方形的面积是25×25=625平方米,也比原来面积40×15=600平方米大了一些。欧拉的'方法做到了一举两得,既节省了材料,又扩大了面积。

《数学神童希帕蒂亚》讲述了女数学家希帕蒂亚10岁时,父亲带她去测量金字塔高度的故事。在一般人的眼中,测量物体的高度是件很简单、很容易的事情。可是因为希帕蒂亚的父亲是一位数学家,他要求女儿用最简单的方法来测量,这可就不容易了。小希帕蒂亚在和父亲散步时,意外的发现自己的影子和父亲的影子重合了,由此聪明的希帕蒂亚想到了运用身高和影子长度成正比例的方法间接测量金字塔的高度。因为:人的身高/人的影子长=金字塔高/金字塔影子长,所以在已知人的身高的条件下,分别测量出金字塔影子的长度和人的影子的长度,就可以很容易的计算出金字塔的实际高度了。

小欧拉和希帕蒂亚没有按常人固有的思路去思考问题,而是开动脑筋另辟蹊径,用别人意想不到的方法解决了生活中的难题。跟欧拉和希帕蒂亚比起来,我感到脸红。每当在学习中有了困难和问题时,我很少换一种方法去思考,总是直接求教于妈妈和老师。通过读欧拉和希帕蒂亚的故事,我深深体会到勤思考、善观察、多角度思考问题的重要。

同学们!当我们在学习和生活中被难题所困扰时,不仿学学欧拉和希帕蒂亚,换一种方法去思考,很可能难题就迎刃而解了。

数学家的名人故事推荐度:

猜你喜欢