当前位置:主页 > 古籍 >

七年级数学有理数的乘法教案及教学设计(通用18篇)

  • 古籍
  • 2024-07-15 12:02
  • admin

七年级数学有理数的乘法教案及教学设计(通用18篇)

导语:有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.以下是小编整理的七年级数学有理数的乘法教案及教学设计,欢迎阅读参考!

七年级数学有理数的乘法教案及教学设计 篇1

一、内容和内容解析

1.内容

有理数乘法法则

2.内容解析

有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。

与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。

基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则

二、目标及其解析

1.目标

(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法

(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性

2.目标解析

达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果

达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.

三、教学问题诊断分析

有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.

本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.

四、教学过程设计

问题1 我们知道,有理数分为正数、零、负数三类.按照这种分类,两个有理数的乘法运算会出现哪几种情况?

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.

设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.

问题2 下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?

3×3=9,

3×2=6,

3×1=3,

3×0=0.

追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?——左边都有一个乘数3.

(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.

设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.

教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.

追问2:根据这个规律,下面的两个积应该是什么?

3×(-2)= ,

3×(-3)= .

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

设计意图:让学生自主构造算式,加深对运算规律的理解.

追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积.

设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.

问题3观察下列算式,类比上述过程,你又能发现什么规律?

3×3=9,

2×3=6,

1×3=3,

0×3=0.

鼓励学生模仿正数乘负数的过程,自己独立得出规律.

设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.

追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

(-1)×3= ,

(-2)×3= ,

(-3)×3= .

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

追问2 :类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.

追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.

问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(-3)×3= ,

(-3)×2= ,

(-3)×1= ,

(-3)×0= .

追问1:按照上述规律填空,并说说其中有什么规律?

(-3)×(-1)= ,

(-3)×(-2)= ,

(-3)×(-3)= .

设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.

问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.

追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?

学生独立思考、回答.如果有困难,可先让学生看课本有理数乘法法则后面的一段文字.

设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.

例1计算:

学生独立完成后,全班交流.

教师说明:在(3)中,我们得到了

=1.与以前学习过的倒数概念一样,我们说

与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.

追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).

例2 用正数、负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为-6°C,攀登3km后,气温有什么变化?

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.

小结、布置作业

请同学们带着下列问题回顾本节课的内容:

(1)你能说出有理数乘法法则吗?

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.

(4)你能举例说明符号法则“负负得正”的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结.

作业:教科书,练习1,2,3;,习题1.4)

课时小结:

这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

课后作业:课本习题1.4的习题2.5 至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。一定要熟记:

(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。

____________________。

(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。

0除以任何_______________________________。

(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。

如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。

三 新知应用:

例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)

学以致用 计算:

(1) (42)7 (2) ( )( )

例2、计算(1) ( )( )( ) (2) ( )( )

(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)

四 课堂练习:

独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)

五 达标测试:

(独立完成)

1 填空:(1)2 的倒数与 的相反数的积是_______。

(2)(1)(3)( )=______。

(3)两个数的商为正数,那么这两个数一定是_________。

(4)一个数的倒数是它本身,则这个数是____________。

2、计算:(1) (2)

(3)、 (4) ( + )

六 总结反思:

1、说一说:

本节课我学会了 ;

使我感触最深的是 ;

我感到最困难的是 ;

我想进一步探究的问题是 。

2、:评一评

自我评价 小组评价 教师评价

七 布置作业

1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)

2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)

七年级数学有理数的乘法教案及教学设计 篇17

一、教学目标

1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;

2.培养学生观察、归纳、概括及运算能力

3 使学生掌握多个有理数相乘的积的符号法则;

二、教学重点和难点

重点:有理数乘法的运算.

难点:有理数乘法中的符号法则.

三.教学手段

现代课堂教学手段

四.教学方法

启发式教学

五、教学过程

(一)、研究有理数乘法法则

问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

解①32=6

答:上升了6厘米.

问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?

解:(-3)2=-6

答:上升-6厘米(即下降6厘米).

引导学生比较①,②得出:

把一个因数换成它的相反数,所得的积是原来的积的相反数.

这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)

把3(-2)和①式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积6的相反数-6,即3(-2)=-6.

把(-3)(-2)和②式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积-6的相反数6,即(-3)(-2)=6.

七年级数学有理数的乘法教案及教学设计 篇18

三维目标

一、知识与技能

经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。

二、过程与方法

经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。

三、情感态度与价值观

培养学生积极探索精神,感受数学与实际生活的联系。

教学重、难点与关键

1.重点:应用法则正确地进行有理数乘法运算。

2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。

3.关键:积的符号的确定。

教具准备

投影仪。

四、教学过程

一、引入新课

在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?

五、新授

课本图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.

(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。

【七年级数学有理数的乘法教案及教学设计(通用18篇)】相关文章:

初二数学实数教学设计02-10

杞人忧天教学设计02-10

六年级数学反比例教学设计02-10

轴对称现象教学设计02-10

蝶恋花柳永教学设计02-10

小学古诗春晓教学设计02-10

考研初等数学考的试范围及重点02-10

曹植七步诗的教学设计02-10

《地球清洁工》教学设计02-10

《小乌龟找工作》教学设计02-10

猜你喜欢