当前位置:主页 > 作文 >

数学建模范文(实用15篇)

  • 作文
  • 2024-06-25 13:13
  • admin
数学建模范文1

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的`作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳。 高等数学教学中融入数学建模思想[J]。 齐齐哈尔师范高等专科学校学报,20xx ( 02) : 119 —120。

[2] 李薇。 在高等数学教学中融入数学建模思想的探索与实践[J]。 教育实践与改革,20xx ( 04) : 177 —178,189。

[3] 杨四香。 浅析高等数学教学中数学建模思想的渗透 [J]。长春教育学院学报,20xx ( 30) : 89,95。

[4] 刘合财。 在高等数学教学中融入数学建模思想 [J]。 贵阳学院学报,20xx ( 03) : 63 —65。

数学建模范文2

1. 问题重述:(略)

2. 问题背景:

交待问题背景,说明处理此问题的意义和必要性。

优点:叙述详尽,条理清楚,论证充分

缺点:前两段过于冗长,可作适当删节

3. 问题分析:

进一步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径

优点:条理比较清晰,论述符合逻辑,表达清楚

缺点:似乎不够详细,尤其是第三段有些过于概括。

4. 模型的假设与约定:

共有8条比较合理的假设

优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。

缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失一般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。

5. 符号说明及名词定义

优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。

缺点:有些地方没有标注量纲,比如A和B的量纲不明确。

6. 模型建立与求解

6.1问题一:

对所给数据惊醒处理和统计,得出规律,找到联系。

优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。

6.2问题二:

6.2.1最短路的确定

为确定最短路径又提出了一系列假设并阐述了理由,在这些假设下规定了最短路径

优点:假设有根据,理由合情合理

缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失一般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费一次。

6.2.2计算人流量的追踪模型

给出计算人流量的方法,并计算了各区人流量,并对计算结果进行了分析。

优点:分情况讨论,并且取了两个典型的具有代表性的例子进行了具体阐述,没有全部罗列所有数据的计算过程,使文章清晰简明,不至于繁冗拖沓,这在以后我们写论文是极其值得借鉴。对结果的分析有针对性,合情合理而且用条形图直观地反映了人流量的数值和各地区间的差异。

缺点:分析还不够详细,考虑因素还不够周到。

6.3问题三

进一步对问题作以简化,将问题的解决最终归结为一个焦点,并对解决这个问题所需确定的因素进行了讨论,最后得出结论。

6.3.1商区消费额的确定

阐述了为什么要计算这个量,计算这个量对解决问题有什么至关重要的作用并且采用了Huff模型并且结合本问题的具体情况来求解数据。

优点:论证充分合理且模型和经济学知识应用恰当,所得数据有效可信,考虑周到而不繁杂,抓住了事物的主要矛盾,而且对Huff模型的解释较为充分。

缺点:对于各商业区的总消费额我们更看重数量而文中用条形图的方式却着重体现了各地区之间的数量差异,有喧宾夺主之嫌,改称图表形式可以更好地反映数据量的值

6.3.2各个商区MS数量的概略确定

确定了确定MS个数的方案,在不失一般性的前提下对问题进行进一步简化,缩小解决问题的范围并对问题进行了求解

优点:简洁明了,论述合理。

6.3.3

引入了一个重要的确定数量的参数,且对解决问题方法的合理性及此数据对问题的解的影响及行了数值分析和理论论证,提出了改进方案,得出结果,并对结果进行分析。

优点:条理清晰,逻辑严谨,论证充分,详尽而不冗长,使本篇论文的精华部分。分析合理且充分考虑到了实际情况使结果更具可信性。

6.3.4LMS和MS的分配情况讨论

对二者关系提出了几条假设。

优点:论述充分,假设合理而且用图表反映结果,简单明了,情况考虑全面周到。

6.4问题四

分析了方法的科学性和结果的'贴近实际性

优点:条理清晰,分析有依据,措辞严谨,逻辑严密而且对前面所述方法进行了分别阐述。这使得对方法科学性的论述更加充分可信。对贴近事实性的论述,理论和事实相结合,叙述数据来源,并采用举例论证法论证结果的贴近实际性。

缺点:结果的贴近实际性的论证中,应详细罗列一下数据的来源,也许更加可信。

7. 模型的进一步讨论

为简化抽象现实一边建构模型而忽略掉的一些因素进行了考虑,对于一些可能影响讨论结果的因素给出了算法和解决方案

优点:考虑全面,善于抓住主要矛盾,表述简明客观。

8. 模型检验

与某些近似且已妥善解决的问题进行了比较,用事实说明处理方案的正确性。

优点:采用了较好的参照对象,采用图像对比的方法,使问题清晰明了。

缺点:应该简述一下雅典奥运会采用的方案是成功的,否则比照就失去了意义,还有由于举办地点不同,地区上的差异使这种单纯与雅典奥运会进行得比较稍显单薄。

9. 模型优缺点

总结模型建立并解决问题的过程中的优点和缺点

优点:简明扼要,客观实在

10. 附录(略)

参考文献

数学建模范文3

一、高等数学课程的重要性

学好高等数学课程,不仅可以学到像数学概念、公式、定理结论这样的理论知识,并在定理、公式的推导过程中更能培养人的逻辑思维能力,提高数学素养,同时是学好后续专业课程例如西方经济学等学科有力保障。高等数学课程更重要的作用是培养学生的理性思维和思辨能力;能启迪智慧,开发创新、创造能力。因而高等数学课程授课效果的好坏直接影响到金融类院校人才的培养质量的高低。在这种形势下,全国金融类院校都开设了高等数学课程。

二、高等数学课程授课现状

每一个讲授高等数学课程的教师在第一次上课时,几乎都会对学生阐述这门课程的重要性。一方面会强调这门课程的理论基础知识的重要性,另一方面强调它在解决实际问题中的应用性等等。大多数学生更感兴趣的这门课程在实际中的应用,但是在实际教学过程中,教师却很难将理论知识应用到实际去解决一些实际问题,理论和实际严重脱节,长期以来,现在高校普遍的高等数学教学教学,为了完成教学任务而“满堂灌”的现象仍旧是普遍存在的,不讲究教学方法,不能做到因材施教,教师授课没有热情,平铺直叙,照本宣科,授课过程枯燥无味,课堂气氛死气沉沉,几乎没有互动。采用的教学手段依然是粉笔加黑板、课本加教案的传统授课模式,现代化的多媒体教学手段应用几乎为零。多种原因都有可能导致学生对高等数学产生抵触情绪、畏难情绪,失去学习这门课程的兴趣。因此要改变目前高等数学课程的学习现状,高等数学的教学改革已经势在必行,刻不容缓。实践证明,如果教师能在讲授重点、难点知识时,引入适当的数学建模案例,不但易于学生对理论知识的.理解,更能增强学生运用学到的理论解决实际问题的能力。从而可以纠正一些学生认为的“高数数学无用论“的思想,激发学生学习数学的热情、兴趣,培养学生的创新力、创造力,提高学生的数学素养与综合素质。

三、数学建模在高等数学教学中的重要性

课程的着重点为挖掘和展现数学理论知识中的数学思维方法及将理论应用到实践。在授课过程中,要求教师对重要概念、定义,要能讲清背景来源,以及它们所体现出的数学思想方法。对教材上的重点例题、典型习题的分析要体现数学思维过程,分析出难点、关键点,新知识如何在题目中应用的,这样才能有助于学生对新知识的理解和运用。课堂上,采用启发式教学,使学生能对教师所授新知识能进行分析、总结、整理,进而能培养学生提出问题、分析问题、解决问题的能力。从而一方面为后继专业课程的学习奠定必要的理论基础,另一方面使学生初步拥有运用数学理论知识解决实际问题的能力。进而培养学生严谨、缜密的科学态度,逐步提高提出问题、分析问题和解决问题的能力。

1.有利于学生对概念的理解与掌握

高等数学中的概念与初等数学相比则更抽象,如极限的精确定义、导数、定积分等,学生在学习这些概念时总想知道这些概念的来源和应用,希望在实际问题中找到概念的原型。事实上,数学中的概念本身就是从客观事物的数量关系中抽象出来的数学模型,它必然与某些实际原型相对应着。因此引入数学概念时,融入数学建模是完全可行的,每当引入新概念时,都可以选择相关的实例来说明这部分内容的实用性。在概念引入时,尽可能选取生活中的常见小问题来还原现实情境后的数学,使学生能够了解概念、定义的来龙去脉,让学生感受到这些定义不是硬性规定的,而是与实际生活紧密相连的。从而便于学生对概念的理解与掌握。例如,在给出“定积分”这个概念时,强调定积分的思想是“分割取近似,求和取极限”。从求曲边梯形面积、变速直线运动的路程、变力做工等生活中常见的实际问题入手。尽管要求的这些问题的实际意义不同,但求解它们的方法及步骤却都是一样的,即都可以通过无限细分、取近似、求和、取极限的思想方法来实现求解过程。最终都可以抽象成为一个和式的极限,从而得到定积分的概念。

2.有利于激发学生学习高等数学课程的兴趣与热情

高等数学教学中长期以来都是重视理论基础、轻实践应用。教师在授课过程中注重基础理论知识的整体性、统一性,根据教学大纲的要求,按部就班的按照传统授课方法,以完成教学工作任务为目标。而对教材中关于理论基础知识应用的部分或是删除、或是略讲。同时高等数学课堂上基本上是以教师讲授为主,学生参与较少、活着几乎没有,定义定理的讲解、证明过程枯燥无味,再加上套用现成公式来解题的做题方法,导致学生没有学习的兴趣,学生即使能做题,也是知其然不知其所以然,缺乏应用数学解决实际问题的能力。长此以往,在学生眼中,数学就成了晦涩难懂、高不可攀的一门高深学问。在高等数学课程教学环节中数学建模案例模型,例如引入“生猪最佳出售时机模型”,使学生了解到可以用简单的数学知识解决重要的实际问题,从而发现数学理论知识不是超越现实的、抽象的,并在完善案例模型的过程中提高数学理论知识的学习。高等数学教学的目的不是为了培养从事专门进行数学研究的人才,而是要学生飞外数学是工具,教会学生这个工具来解决实际问题才是根本。当通过具体数学模型案例,使学生真正体会到了数学在解决实际问题中的巨大作用,可以增强学生的学习数学的主动性,并对高等数学课程产生浓厚的学习兴趣,利于高等数学课程学习的顺利完成。

3.有利于学生对数学理论知识的应用,提高学生专业素质

从月蚀中地球的阴影计算出月球、地球之间的距离是古代数学建模的经典案例,而牛顿的万有引力定律则是现代数学建模的成功运用的案例之一。诸如最优捕鱼策略、生猪的最佳出售时机、投资的收入和风险等现代数学模型表明,数学建模的应用已经不仅仅局限在天文学、物理学、化学领域,而已经快速地向生物、经济、金融等领域延伸,几乎在人类社会生活的每个角落都能看到它所发挥的无穷威力。近年来,随着计算机的飞速发展,数学的应用性更是得到充分发挥。利用数学方法解决实际问题时,首先要进行的工作是分析问题建立数学模型,然后利用计算机软件对模型进行求解。高等教育中本科阶段,大部分高校的人才培养目标是培养应用型人才,而培养这类人才的关键是培养学生应用数学理论知识的能力。数学建模是将理论知识与实际问题联系起来的桥梁和纽带。因此在高等数学授课过程中引入数学建模,在便于学生理论知识学习的同时,加强学生对数学理论知识的应用性。教师应注重学生专业背景,引入与学生所学专业相关的数学模型,这样才能有助于激发学生的学习积极性,即用所学高等数学知识解决了实际问题,又提高了学生专业素养。

总之,数学建模在高等数学教学中起着重要作用,在加深学生对教材的概念的理解掌握的同时,能激发学生学习数学的兴趣与热情,发挥学生学习的主观能动性,提高学生运用理论知识解决实际问题的能力,为提高高等数学课程教学质量奠定坚实基础。

数学建模范文4

尊敬的各位老师、同学们:

大家好!我是通工xx班的xx。今天很荣幸在这里发言。

参加数学建模比赛就三天,当然算上准备阶段那就几个月了。三天,说长不长,说短不短。用一句时髦的话概括这三天给我的感受就是:痛并快乐着,快乐是因为我有幸享受了这三天的比赛,大家积极讨论,充分交流带来的快乐,还认识了许多新朋友以及对我们如朋友般的老师们。大家好像生活在一个密闭的小社会里,感觉就像一家人一样。痛是因为在比赛三天里很累,每天都得对着问题思考,几乎都是通宵达旦的做。在这里我首先要感谢陪伴我们一路走过来的老师。一路走来,校领导、老师对我们很关心,很支持,尽量为我们营造一个良好的外界环境。正是因为有他们的关心和支持,我们才取得了这么好的成绩。

在数学建模的过程中我也得到了许多收获,是建模锻炼了我,是建模让我得到了提高。在学习建模的过程中,我失去了很多,但也得到了很多。参加数学建模后,我的视野更加开阔了,看待问题的角度和别人不同,遇到问题,我总是与别人有不一样的.见解,同时我学会了用数学来解决实际问题,又一次体会到了数学的博大精深。更重要的是,数学建模教会了我怎样心无杂念的去做一些事情、只要耐下心来去解决问题所有问题都将不再是问题。我一直都觉得重在过程,只要我努力了,认真地实施这个过程,结果是不会骗我的,同样,这次我又一次验证了这个真理。

另外,在这里我要感谢和我一起参赛的队员,通过这次竞赛,我深刻地认识到:什么事情仅靠个人是不行的,团队精神很重要,只有飞外与别人合作才可能成功,回首整个过程,一路走来,我们三个一直都是相互依偎相互鼓励着走过来的,同时在这个过程中,我们三个队员也建立了深厚的友谊。同时我也希望有更多的同学能够参加到数学建模中,我也相信,我们学校的实力也会越来越强大。

回首望去,这样的一次竞赛也使我终身受益,在身体和心理各方面,数学建模都给了我极大地锻炼,我得到的不只是人生的一段美好的回忆,更是我人生的一笔巨大的财富!

感谢在这里与大家分享我的感受和体会。

数学建模范文5

1在线性代数教学中融入数学建模思想的意义

1.1激发学生的学习兴趣,培养学生的创新能力

教育的本质是让学生在掌握知识的同时可以学以致用。但是目前的线性代数教学重理论轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不仅可以激发学生学习线性代数的兴趣,而且可以调动学生使用线性代数的知识解决实际问题的积极性,使学生认识到线性代数的真正价值,从而改变线性代数无用的观念,同时还可以培养学生的创新能力。

1.2提高线性代数课程的吸引力,增加学生的受益面

数学建模是培养学生运用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这可以大大改善线性代数课堂乏味沉闷的现状,从而提高线性代数课程的吸引力。由数学建模的教学现状可以看到学生的受益面很小,然而任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。

1.3促进线性代数任课教师的自我提升

要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不仅要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的能力,这就迫使线性代数任课教师要不断学习新知识和新技术,促进自身知识的不断更新,进而达到提高教学和科研能力的效果。

2在线性代数教学中融入数学建模

思想的途径虽然线性代数课程本身的内容多,课时不够,但我们将数学建模的思想融入线性代数课程中,并不是用“数学建模”课的内容抢占线性代数课程的课时,在此,笔者仅从下面2个方面着手将建模的思想逐步渗透到线性代数的教学中。

2.1在线性代数的概念中融入数学建模的思想

从广义上说,线性代数教材中的行列式、矩阵、矩阵乘法、向量、线性方程组等复杂抽象的概念都来源于实际。因此在讲授这些概念时可以恰当选取一些生动的实例来吸引学生的注意力,同时将概念模型自然地建立起来,使学生充分感受到实际问题向数学的转化。例如矩阵是线性代数中的一个重要概念,在引入矩阵的概念时,可以从一个简单的投入产出问题出发,将这个问题中的数据用矩形表来表示,这种简化思想即是建模抽象化思想的很好体现,而这样的矩形表就称为矩阵。

2.2在线性代数的课外作业中融入数学建模的思想

课外作业是对课堂教学内容的消化和巩固,然而目前线性代数的教材以及相关参考书中的习题都没有涉及到线性代数中定义、定理在实际中的应用问题,为了弥补这一点,我们可以在习题中补充一些线性代数建模问题,具体的做法如下。

1)在学完1~2个单元后,针对所学的内容开展1次大型作业,学生可以3人一组通过合作的方式来完成该作业(即完成1篇小论文)。学生在完成作业的过程中,不仅可以加强和巩固线性代数的课堂教学内容,还可以提高自学能力和论文写作能力以及培养他们的团队合作精神。同时通过完成大型作业可以使学生尽早地接触科研方法,这与目前鼓励大学生进行科研创新的宗旨是一致的。

2)在所有学生的大型作业完成之后,可以组织学生讲解完成作业的思路以及遇到的问题,而教师则针对不同的文章做出相应的.点评并指出改进的方向。这种学生讲教师听的换位教学模式不仅可以督促学生更好地完成作业,还可以提高学生的语言表达能力以及促进师生的关系,从而大大提高了教学效果。

3在线性代数教学中融入数学建模

思想的案例案例1:投入产出问题[4]。某地有一座煤矿,一个发电厂和一条铁路。经成本核算,每生产价值1元钱的煤需消耗0.3元的电;为了把这1元钱的煤运出去需花费0.2元的运费;每生产1元的电需0.6元的煤作燃料;为了运行电厂的辅助设备需消耗0.1元的电,还需要花费0.1元的运费;作为铁路局,每提供1元运费的运输需消耗0.5元的煤,辅助设备要消耗0.1元的电。现该煤矿接到外地6万元煤的订货,电厂有10万元电的外地需求,问:煤矿和电厂各生产多少才能满足需求?模型假设:假设不考虑价格变动等其他因素。

4结束语

在线性代数教学中融入数学建模思想,培养学生的建模能力,是符合当代人才培养要求的,是可行的。同时也要认识到数学类主干课程的原有体系是经过多年历史积累和考验的产物,若没有充分的根据不宜轻易彻底变动。因此数学建模思想的融入要采用渐进的方式,尽量与已有的教学内容进行有机的结合。

实践证明,通过在线性代数教学中融入数学建模思想,不仅激发了学生的学习兴趣,培养了学生的创新能力,还可以促进教师进行自我提升。但如何在线性代数教学中很好地融入数学建模思想目前还处于探索阶段,仍需要广大数学教师的共同努力。

数学建模范文6

我入协会一年多了,仅以我在协会的这些时光来总结一下我眼中的协会工作,也是对协会在我任会长期间的意见。

在我入会期间,我结识了很多对数学建模爱好的学长。没有得说,包括我们前任会长曹正雄学长。在协会里边有许许多多获过很多奖项的人,每一个人进来都不会空着手回去,因为本着同个爱好,大家走在了一起,并且相识,相知,共同学习探索。在我们老会长和梁老师的带领之下出征全国数学建模竞赛,并且带回许多的荣誉。所以这可以说明一个现象,那就是在我们协会大家相处的都比较融洽,协会的人都比较好相处,比较爱好学习。这是我协会的一个特点。

在这个学期我们举行了三次活动,分别是招新骨干竞选,数学建模知识竞赛,还有一个就是数学建模交流会。在骨干竞选的时候人是相当的多,因为每一个新生对于一些新鲜事物总是很重视很想去尝试,然后都想在讲台上好好表现自己,展现自己的才华,从而让自己脱颖而出。而后就是数学建模知识竞赛,可能是因为宣传力度不大的缘故吧,来参加的人也就将近70多个人,并不是所有的会员都参与了我们的活动,无论人多人少,我们活动都得做得最好。让所有来参加活动的人都不只是玩乐,而且要在活动中学习到知识和团队精神。这次活动本人比较满意,就是在准备了之后还是有许多的细节问题没有注意,但是我们集体的大脑,把问题都在第一时间解决。最后一次活动就是数学建模交流会,我们请到了许多获奖的学长来为我们上了一堂生动的课程,每一个获奖背后都有许许多多的汗水,我相信每一个到场的人都会学习了很多,并且也给自己规划了以后,我们的学长还走到人群中去为学弟们解决无论生活还是学习上的问题,更加激发了他们学习的斗志。

我们每个协会都应该做到保留优良传统的同时要发现我们自身的问题和潜在的问题,及早的去解决才能够更长久的发展下去。 下面我来总结一下我认为有问题的地方,还有我觉得要努力的地方。 我们数学建模协会是一个学术性的协会,平时的学习,探索最为重要,虽然协会安排了每周都有带队去听老师的公选课,但是一个乏味的学术性问题会使人无法集中精神,也就导致后面越来越少的人参与了,不是说老师讲得不够生动,而是我们这些学生不愿意去探索,去学习。学习是强迫不来,只能激发,但是有什么办法可以激发,办法不是那么简单就可以像出来的。这是个问题。

老会长的工作非常的认真和积极,工作和能力都非常的强。就是向他看齐,我也得努力的去做得更好,会长一职落在肩膀才发现原来竟然是那么的沉,会长并不是那么的好当,虽然说可以支配下面的人工作,但是也会存在别人不配合,不听你的.。这就需要磨练自己与他人的相处度了。并且安排任务并不如你自己想象的那么完美的做好,有时候在活动中会戏剧性的出现工作疏忽和失误,这就需要自己脑子转得很快,在相应的时间内找到解决方案。

协会建立并不是很久,新增加的东西并不太多,但还是会丢失的东西,这样就出现了负增长,这让我很不能理解,不过细细想想也是可以理解的。因为变化是需要有条件的,确实一个协会要发展很难,而且它的发展是细微的,不可能有大幅度的动作,还需要协会的每个人去想去做去试。协会每年招新的人数可能都过百了,但是好像能留过10个人到最后的都是少之又少,同样的这里有管理的问题,但更多的我们没有能留住人的地方。这又是个问题。

这些都是归结出来的大问题,其中的小问题,要涉及很多很多,在我任职期间我会尽全力为协会,和我们这些兄弟姐妹把协会建立好。发挥集体的智慧,协会不是一个人的协会,是大家的协会,会长不是协会老大,而是委托管理人,因此在一些事情上还是发挥大家的智慧吧,毕竟团结就是力量。

数学建模协会

XX部XX

数学建模范文7

摘要:所谓数学建模,即借助数学模型,处理所遇到的具体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。

关键词:数学建模;计算机应用;融合

1.数学建模与计算机技术概述

目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。就数学建模来看,计算机在此方面的作用不言而喻。对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。

2.计算机技术在数学建模中的应用

计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。

2.1计算机技术辅助确立数学建模思想

对于数学建模,其最为重要的目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的完善,最终提升其对于数学知识的使用能力。培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决某个问题,但是在建模的辅助下一切问题迎刃而解。

2.2计算机技术促进数学建模结果求解

对于数学建模,其属于一项系统性工程,整个过程工作量较多。在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。在计算数学模型时,不仅速度快,准确度也很高,如表1给出了手动解30维线性方程组和计算机解30维方程组的时间,手动所用时间是计算所用时间的1200倍。

同时,对于一些借助纸和笔而无法实现的计算,通过计算机能够较快实现,其中主要涉及到相关的编程、绘图等操作。

3.数学建模与计算机应用融合的优势

计算机在数学建模领域拥有极为重要的优势与作用。如计算机的计算速度快、可以辅助作图,甚至可以辅助做立体图形。同时,借助于计算机也能够使得模型得以进一步完善,也就是說两者彼此之间相辅相成。

3.1计算机使数学建模多样化

数学建模的出现,主要是为了便于处理同工程或者科研相关的问题的,和试题类有着较大区别。其所处理问题具有一定的特性,即围绕日常具体问题展开,科研背景突出,需要的知识结构复杂,涉及的范围庞大,因素多且难,非常规特征明显,缺乏有效的处理措施,涉及数据多,要选择的算法亦十分繁琐,得出的'结果存在波动性,要有限定的前提,通常仅可获取近似解。而计算机的出现,则在一定程度上使这种情况得到缓解。是数学建模多样化,令设计领域更加宽泛,如数学建模可以模范人类大脑的记忆功能。

3.2计算机使数学模型求解更为简单

计算机在数学建模中的应用使得数学模型求解更为简单体现在以下几个方面:

(1)计算量问题得到解决。以前计算量大是制约数学建模发展的主要因素之一,现在在计算机的帮助下,只要模型完善,计算量大已经不是问题。如德国的神威计算机,计算速度达到了12.5亿亿次/秒。

(2)可视化功能使抽象问题具体化。现代计算机都有强大的作图功能,会使数学模型中的一些抽象概念、问题解决过程都变得可视化。图表的制作更是非常简单。

3.3计算机利用数学建模寻求最优解成为可能

在3.1节中已经提到,在计算机没有应用到数学建模中之前,很多数学模型的解只是近似解,连精确解都谈不上,更不用说是最优解。其主要原因是模型本身的计算量太大,笔和纸这两样工具更不能在短时间内攻下数学模型计算这块,此外笔和纸根本不可能完成某些图表的制作也是原因之一。计算机有效的解决了这两个问题,这就会使得数学模型得到精确解。在求得精确解的基础之上还可以进一步寻求最优解,因为数学模型的解往往是多解的,不是唯一解。

4.总结

数学模型,其主要是通过使用相应的数学语言来对实际问题进行相应的表示,也就是说,模型的实质主要是为了有效解决生活中的实际问题。通过借助于计算机能够使得复杂问题得以有效简化,对于促进社会发展起到了重要作用。因而,在未来发展中数学建模也将会像计算机一样得到广泛重视。目前,对于教育界而言,其主要问题在于理论与实践相脱节。我们的教学越来越形式、抽象。在教材中,充斥着大量的定理、理论证明等等,但是并没有将其与实际生活相结合,而对于借助相应的数学教学来实现脑力发展的系统化更是微乎其微。将计算机与数学建模相结合,这是未来数学领域发展所必须经历的一个过程。

参考文献:

[1]李大潜.数学建模与素质教育[J].中国大学教育,20xx (10):41-43.

[2]姜启源.数学实验与数学建模[J].数学的实践与认识,20xx,31(5):613-617.

数学建模范文8

1、数学建模思想对教师的促进

1。1数学模型应与现行教材相结合

教师应事先研究在各个章节中可以引入哪些相关模型问题,如:在讲到极限计算时,可以引入复利、连续复利和贴现模型,不仅可以让学生了解一些经济名词,而且还可以让他们深入理解这些经济名词背后的数学原理.对于没有线性代数基础的学生,若引入投入产出分析模型,很明显就不合适了.数学教师在教学的过程中要经常渗透建模意识,通过教师应用举例,学生可以从各种模型中领悟到数学建模使用的广泛性和数学学科的实用性.近几十年来,随着科学技术的发展和社会的进步,数学这一重要的基础学科迅速地向自然科学和社会科学的各个领域渗透,并在经济建设、工程技术及金融管理等方面发挥出越来越明显,甚至是举足轻重的作用.“高技术本质上是一种数学技术”的观念,已为越来越多的人所认识和接受.

1。2各种软件的使用

高校课堂教学过程中,现代教育技术以及各种数学软件已经广泛使用.首先,教师将多媒体教学与传统的板书教学有机结合,使其优势互补.利用多媒体制作一些动画,如旋转多面体的旋转过程、正态分布图像等,使学生对抽象的数学符号、数学概念有直观形象的认识.其次,模型的求解需要借助于一些软件,如LINGO、MATLAB、SPSS等.事实上,我们手中现有的软件也可以起到类似作用,例如,EXCEL软件,这是大家都比较熟悉的,在求解简单的统计学的检验模型时,完全可以使用EXCEL,而不需要专业的统计学软件.这就需要教师们会使用一些相关软件.

2、数学建模思想对学生的促进

2。1数学建模思想有助于激发学生学习数学的兴趣

数学一门比较枯燥的基础学科.兴趣是学好数学的关键,有兴趣才有渴求,有渴求才有动力,有动力才有成功.尤其对于大一的学生来说,他们刚刚进入大学校门,对于大学的认知是全新的,对于知识是渴求的.他们大部分都是认真的,希望与老师一起走进数学的海洋,与老师一起学习、共同进步.因此,高校数学教师要善于发挥数学教师的特长、优势、气质来吸引学生,从而培养学生的学习兴趣.在数学教学过程中引入数学模型,不仅丰富了数学教学内容,还使数学与实际生活联系更加密切.如:人口增长预测、奥运公交路线设计、世博会效果评价、产品定价等实际问题,可以采用不同的教学形式,把实际问题转化成数学问题,建立了数学理论通向数学模型的桥梁,从而激发学生学习数学的兴趣.

2。2数学建模思想有助于培养学生多方面的能力

首先,数学建模能够培养学生对数学知识的实际应用能力.数学建模的问题多数是来源于实际生活,需要对其分析后,选取有用的信息,寻找有效的数据,采用合理的模型求解,最终将结果应用于实际,或是通过实际来检验.数学建模除了需要数学专业知识外,还需要其它方面的专业知识,比如:经济学、物理学等.这样不仅培养了学生用数学思想和语言表述实际问题的.能力,还开阔了学生的视野,拓宽了学生的知识面,提高了解决实际问题的能力.其次,数学建模有助于培养学生的观察力和创新能力.对于不同的数学模型,可能源自不同的实际问题,具有不同的专业背景,但它们可能具有相似的数学理论.这就要求学生经过观察后,发现不同问题下的相同本质,从而建立模型解决问题.由于数学建模的内容是来源于生活,具有很大的灵活性,是一个开放性的问题,没有统一的标准,没有统一的答案.因此,对于同一问题,学生可以根据自身条件,从不同角度,采用不同的方法,建立不同的模型解决,有助于培养锻炼学生自主创新的能力.再次,数学建模可以培养学生的团队意识.现在的高校大学生,大多是家中独子,从小可能就比较自我,缺乏团队意识.数学建模是一个复杂的过程,不可能仅凭一人之力完成,所以需要多人分工合作.在遇到困难时大家互相探讨,发挥各自优势、智慧,最终一起努力完成.数学建模思想的合理运用对大学数学改革起着重要作用.高等院校是为社会培养符合时代要求的合格人才.具有创新能力的人才将是21世纪最具有竞争力、最受欢迎的人才.大学数学教育不仅要让学生掌握必要的数学理论和方法,更需要培养学生运用数学思想解决实际问题,以此提高他们的创新能力、应用能力,提高学生的数学素养.因此,数学建模思想在高校数学教学中有着不可替代的促进作用.

数学建模范文9

工作职责:

1、数学建模,算法设计,数理统计分析

2、数据挖掘、分析和建模

3、深度学习、人工智能

基本要求:

1、数学、统计等理工科背景

2、具备扎实的数理统计、回归分析、时间序列分析、仿真等相关知识储备

3、有一定的.编程、建模能力者,参与过大型级别的建模比赛者优先,熟悉使用python、matlab、sas、spss、r等软件者优先

4、具有快速学习、乐于学习的能力,愿意学习跨行业知识、对技术有热爱

5、良好的沟通和语言表达能力,强烈的责任感和解决问题的能力

数学建模范文10

摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究

一、引言

建模思想使高等数学教育的基础与本质。从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状

高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。因此,对高数进行教学改革是十分有必要的`,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性

第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。 这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。

第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要飞外专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。

第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。

四、将建模思想融入高等数学的实践方法

第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。

第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。

第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问(山根是什么?山根也叫鼻根,位于疾厄宫(年上、寿上)之上,在两眼之间,与眼同宽,属于心区。山根主要看一个人的心思、夫妻婚姻感情、父亲等。)题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。

数学建模范文11

一、活动名称:

校园数学建模征文-------“我心中的数学建模”

二、活动口号:

“展现数学之美,尽显理性的魅力”

三、活动对象:

全院所有同学。

四、活动时间:

xx年10月10-----xx年11月15日

五、活动地点:

西安文理学院数学建模协会

六、活动目的:

通过“我心中的数学建模”征文活动,向全校各个院系的同学宣传数学建模,让同学们对数学建模有一个基本的了解。借此吸引有兴趣的同学来参加数学建模竞赛,调动同学们对数学知识的积极性及挑战思维的极限,培养大学生运用数学理论,管理理论,经济学等有关理论和方法、利用文献、计算机等工具分析和解决实际问题的能力,培养学生的创新思维和合作精神,扩大学生竞赛受益面。真正的'把数学建模大赛推广到全校学生中去!

七、活动意义:

通过这次征文大赛,使全院同学对数学建模有更深的了解,使更多的同学喜欢上建模并参家建模。在建模中培养同学们的创新精神和综合运用各种知识解决实际问题的能力,增强了同学们学习的主动性。通过参加建模使同学们能够开动脑筋、拓宽思路,充分发挥自己的想象力、洞察力和创造力,激发同学们的学习兴趣、培养良好学习习惯。而且数学建模这项活动也培养了同学们团结合作精神和诚信意识,有益于把同学们培养成为和谐社会中合格、优秀的一员,并且贡献自己的力量。这种团队精神与协调能力在同学们毕业后的工作中,以及对一生的发展都是非常必要的。

八、活动安排:

① 全院同学于11月01日前将自己的参赛稿交与院数学建模协会。

② 数学建模协会组织部于11月02日统计参赛稿件并交与数学建模协会办公室。

③ 数学建模协会于11月10日前对稿件审批并评选出优秀文章,将优秀学生名单教育组织

④ 组织部负责策划对优秀学生的奖励并将优秀学生名单全校公布。

⑤ 数学建模协会于11月15日前举办“关于对‘我心中的数学建模’征文活动中获奖学生的奖励”。【具体时间另行通知】

九、活动奖项的设置:

一等奖50元+证书

二等奖30元+证书

三等奖20元+证书

优秀奖证书

十、活动经费:总计170元整

十一、主办方:西安文理学院数学建模协会

策划书:数学建模协会

xx年9月2日

数学建模范文12

为了举行20xx年院级数学建模竞赛,考虑到高职学生的数学基础、专业知识、计算机水平都很薄弱,各专业数学知识侧重点不同,而建模竞赛选手的综合素质要求知识面宽、运用数学知识解决实际问题的能力强。为此,开设《数学建模与实验》选修课,每周4课时,为期半年。选派优秀中青年教师承担教学和指导任务,引导学生广泛参与。我们既照顾了初学者了解建模基本思想的需要,又拓宽了高职学生知识面,也大大扩大了受益面,让更多的新生能有一个培养创新意识、提高应用数学知识的平台。

根据高职学生的实际和以应用能力培养为主的人才培养要求,本着“必需、够用”的基本原则改革教学体系,坚持以实用性和针对性为出发点,把教学的侧重点定位在对学生数学应用能力的`培养上。实行“边学习、边备赛、边实践、边创新”的教育方式,寓学于赛,学以致用。通过把备赛思想引入课堂,增强学生应用技能、实践能力和培养创新精神,逐渐形成一套有利于培养学生的应用数学能力、上机操作能力、创新精神的教育新机制。

5月14日我院20xx数学建模竞赛顺利举行。本届数学建模竞赛,是在认真总结以往比赛经验的基础上进行的。本次比赛有48名学生参加,与以往相比,本届竞赛组织更加周密,水平有了较大提高。比赛过程中,参赛选手严守纪律,表现出了良好的赛风。

总之,本届竞赛,准备充分,组织严密,协调得力,赛事圆满。通过比赛,锻炼了教师队伍,对促进学生的学习积极性,将起到良好作用。同时,通过院级竞赛选出10个队代表我院参加20xx年全国大学生数学建模竞赛。

数学建模范文13

一、充分发挥学生主观能动性并对问题进行简化、假设

学生的想象力是非常丰富的,这对数学建模来说是很有利的。所以教学时要充分发挥学生的想象力,让学生通过小组合作来进一步加深对问题的理解。我们要求的是两车相遇的时间,那么我们可以通过设一个未知数来代替它。根据速度×时间=路程,可以假设时间为x小时,根据题意列出方程:65x+55x=270

二、学生对简化的问题进行求解

第三步,就是要给刚才列出的方程,进行变形处理,变成学生熟悉的,易于解答的算式,如上题可以通过乘法分配律将等式写成120x=270,利用乘法算式各部分间的关系,积÷一个因数=另一个因数,得x=2.25。有的方程并不是通过一步就能解决,这时就显示了简化的重要性,需对方程进行一定的变形、转化。

三、展示和验证数学模型

当问题解决后,就要对建立的模型进行检验,看看得到的模型是否符合题意,是否符合实际生活。如上题检验需将x=2.25带入原式。左边=65×2.25+55×2.25=270,右边=270。左边=右边,所以等式成立。在这个过程中,可以体现出学生的数学思维过程与其建模的逻辑过程。教师对于学生的这方面应进行重点肯定,并鼓励学生对同学间的数学模式进行点评。一般而言,在点评时要求学生把相互间的模式优点与不足都要尽量说出来,这是一种提高学生对数学语言运用能力与表达能力的训练,也能让学生在相互探讨的过程中,得以开启思路,博采众长。

四、数学模型的应用

来自于生活实际的数学模式其建模的目的是为了解决实际问题。所以立足于此,建模的实际意义应在于其应用价值。模型应具有普遍适应性,不能是一个模型只能解决一个实际问题,这样的模型是不符合要求的。所以在建模时需要考虑要建的模型是否有实用价值,是否改变一下,还能通过怎样的方法进行解题,如果数学模型只适合一题,不适合相关题,就没有建立模型的必要。如给出这样的题目:两地之间的路程是420千米,一列客车和一列货车同时从两个城市相对开出,客车每小时行55千米,火车的速度是客车的1011,两车开出后几小时相遇?我们就可以通过刚才的'模型来解题。设两车开出后x小时相遇。55x+55×1011x=420解得x=4将x=4代到方程的左边=55×4+55×1011×4=420,右边=420,左边=右边,所以x=4是方程的解,符合题意。这样,完整的数学模型就建立了。为以后相似类型的题建立了一个模型,遇到这样的题就可以通过这个模型来做。在小学数学教学中,许多内容都可以在学生的生活实际中找到背景。在数学建模活动中,向学生展示的也是他们身边的事,解决的又是他们碰到的实际问题。因此,让学生从生活实际出发,创建数学模型,不仅能够激发起他们学习数学的兴趣,让他们觉得学有所用,更能培养他们的数学眼光,在碰到问题的时候,能够从数学的角度加以思考,而且能够给他们以后学习打下基础。再者,在数学思想中,数学知识得以形成与体现。而数学概念则是根据数学知识的现象所总结出来的。相关的数学规律与数学问题的解决,更是一种对于数学思想的实际应用。总的来说,建模思想可以帮助学生更进一步地感悟数学思想,积累数学经验,起到举一反三、触类旁通的作用。既然,建模具有种种优点,其有效运用能为小学数学教学提供许多帮助,那么何不以此为契机,形成更为开放的数学教学体系和手段,培养更具主动意识和操作能力的学生呢?

数学建模范文14

《新课程标准》对学生提出了新的教学要求,要求学生:

(1)学会提出问题和明确探究方向;

(2)体验数学活动的过程;

(3)培养创新精神和应用能力。

其中,创新意识与实践能力是新课标中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义。

数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是应用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题,自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。但是《新课标》虽然提到了“数学模型”这个概念,但在操作层面上的指导意见并不多。如何理解课标的上述理念?怎样开展高中数学建模活动?

数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

一、在教学中传授学生初步的数学建模知识

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的`数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。 二、培养学生的数学应用意识,增强数学建模意识

在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。

三、在教学中注意联系相关学科加以运用

在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学的和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

数学建模范文15

摘要:对于高职院校的学生来讲,数学在其教学过程中起着基础性的作用,对于学生后续的学习相当关键。但是从现阶段高职院校数学教学的基本情况来看,数学教师的教学方法以及教学策略都相当落后,对于学生数学兴趣的提升造成了不同程度的影响。在这样的背景下,相关专家提出了数学建模的方式,希望以此提升高职院校高等数学的教学效率。本文结合数学建模在高职高专人才培养当中的意义和作用入手,对于其中的应用策略进行全面的分析,希望为相关单位提供一个全面的参考。

关键词:数学建模;思想;高等教学

1引言

随着我国社会的发展,经济产业结构日益升级,因此高等院校的人才需求日益扩大,对于高职教育的发展提供了前所未有的契机。在这样的背景下,从数学建模入手,将其思想融入到高等教育的数学教学当中,对于其中的策略和方法进行全面的研究应该是一项具有普遍现实意义的工作。

2数学建模在高职高专人才培养过程中的意义

从近些年的发展来看,参加过数学竞赛的学生在科研能力等方面都具有比其他同学更强的优势,因此数学建模在提升学生创新能力、提高学生知识水平以及调动学生的学习兴趣都具有十分重要的意义。比如在解决实际问题的时候,数学建模通过利用各种技巧,可以使得学生分析问题、创造能力得以全面的提升,进而使得学生在摒弃原始思考问题方式的基础上,敢于向传统的知识发出挑战,对于学生的综合能力的全面提升相当关键。其次,数学知识本就源于生活,因此在建模的基础上学生就可以带着问题去思考,这对于数学知识整体性的发挥以及解决问题能力的提升都具有十分重要的意义。最后,面对传统数学的解决方式,很多学生望而生畏,因此主动分析问题的欲望就会受到遏制。在这样的背景下,通过数学建模方式,学生会发现数学方法的灵活性,进而使得他们解决问题的能力得以全面的提升。

3数学建模方式在高等数学中的应用

3.1制定切实可行的教学大纲,从而使得教学进度得以保障。教学大纲在高职教学当中起着十分重要的作用,这对于教学内容的合理性以及提升学生学习的针对性都具有十分重要的意义[1]。比如在教学高等数学(一)的选修模块时,教学大纲的制定应该结合学生的专业,从而使得学生的数学学习真正取得实效。比如可以为理工类的学生选择无穷级数以及傅里叶变换的内容;机械类的`学生选择线性代数以及解析几何作为教学内容,从而使得学生的综合能力得以全面的提升。3.2开展“三段式”的教学模式。数学建模在以解决实际问题为核心的过程中,使得学生分析问题以及组织问题的能力得以全面的提升,这种方式的本质为素质教育,因此不能和现行的其他教学模式分割开来,这就需要相关部门开展“三段式”的教学模式,使得学生的数学兴趣得以全面的提升。其中,第一段需要还原数学知识的原创过程,使得学生明确数学知识的产生过程,进而让学生从生活案例当中发现数学的价值,比如知道极限是由人影的长度变化引起的,导数是由于驾车的速度引入的,使得学生发现知识的价值,进而就会大大提升自己的学习兴趣和探究意识。第二段:讲解数学知识。数学建模是在实际问题当中引入的,因此要通过具体数学知识的讲解使得学生明确数学建模的真正价值,比如在讲解微积分的过程中,可以以“极限-微分-积分”为主线,使得学生对于数学的分析能力真正得以提升[2]。然后在为学生积极引入大量数学图表的基础上,为增强学生的感性认识,进而提升学生的综合能力奠定坚实的基础。第三段:数学知识的运用。随着社会的发展,数学的应用在各行各业都发挥出巨大的作用,因此对于高等数学在实际生活当中发挥出来的作用进行全面的探究是实现这种知识价值的真正途径。在这样的背景下,高等数学教师要将每个知识点的运用真正灌输给学生,比如指数增长在银行计息当中的应用、定积分在学习曲线当中的应用、再生资源在数学开发以及管理当中的应用等等。从而使得学生数学学习中的创新意识以及应用能力得以全面的提升。3.3开设数学实验,提升学生的综合素质。数学建模为学生提供了一种真正的“数学实验”,在这种实验的过程中,学生对于数学知识的发展以及由来过程都会得到进行全面的考虑,这对于他们数学探索意识的提升具有十分重要的意义。另外,在计算机辅助实验的过程中,学生的动脑能力也会得到全面的提升,这对于学生主动的学习数学相当关键。因此在教学过程中,教师要积极利用这种方式对于学生进行全面的培养。

总之,随着我国经济水平的不断提升,社会对于高职院校的重视力度日益提升,因此对于高职院校当中数学建模思想在高等数学教学当中的应用进行全面的分析是实现学生综合素质得以全面提升的关键措施,这对于学生的长远发展也相当关键,相关教育工作者要加大在这方面的研究力度,力求将高职院校的学生培养成为新时代所需要的人才。

参考文献:

[1]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教学中的探讨[J].景德镇高专学报,20xx,(4).

[2]张卓飞.将数学建模思想融入大学数学教学的探讨[J].湘潭师范学院学报(自然科学版),20xx,(1).

【数学建】相关文章:

建康原文及赏析02-27

中国少先队建队日作文07-17

住建局年终03-09

鹧鸪天建康上元作原文赏析12-18

水龙吟·登建康赏心亭原文及赏析12-18

住建局年终优选[7篇]03-10

水龙吟·登建康赏心亭原文赏析及翻译12-19

数学作文05-05

[精选]数学的作文11-15

数学作文10-21

猜你喜欢