《乘法分配律》教学设计(精选16篇)
《乘法分配律》教学设计 篇1教学内容:国标本苏教版小学数学教学内容。乘法分配律是本单元的教学重点,也是难点。教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程。同时,学好乘法分配律是学生下节课进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
二、教学目标:
1、结合具体的问题情境,经历探索乘法分配律的过程,理解并掌握乘法分配律的意义;
2、在观察、比较、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁;
3、在学习活动中不断产生对数学的好奇和求知欲,培养良好的学习习惯。
三、教学重点和难点:
教学重点:经历探索乘法分配律的过程,建立乘法分配律模型。
教学难点:理解乘法分配律的意义。
四、教学流程:
(一)创设情境,感知规律
师生谈话导入新课。
师:同学们,“爸爸和妈妈都爱我。”这句话还可以怎么说?
“小明和小华都是他的好朋友。”这句话也可以怎么说?
生:……
师:真聪明,回答正确,在数学王国里也有类似的表达,今天让我们一起去探索吧!
[设计意图:本环节通过创设一个充满趣味的生活问题,引领学生发展自身的灵性,寻求数学知识,与现实问题之间的本质联系,促进学生感悟、内化、激发学生探索新知的兴趣。]
(二)解决问题,明晰算理。
1、情境一——厨房贴瓷砖
(1)让学生从图中获取数学信息,提出数学问题。
(2)生汇报,师择取问题:一共贴了多少块瓷砖?
让学生用多种方法列综合算式解答问题,然后小组内交流算法及解题思路。
(3)组织全班交流,要求学生讲清楚是怎样想的。教师配以课件演示并适时板书四种算法:3×10+5×10;(3+5)×10;4×8+6×8;(4+6)×8。
(4)小组讨论:观察四个算式,哪两个算式联系紧密,是否可以用等号连接?
(5)全班交流。[(3×10+5×10与(3+5)×10联系紧密,可用等号连接;4×8+6×8与(4+6)×8联系紧密,可用等号连接。]
追问:为什么可以用“=”连接?让学生充分讲道理。
(6)比较:观察上面两组算式,你有什么发现?(例题3乘法分配律
教材分析
本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。
学情分析
本课的`教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。
教学目标
1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。
2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。
3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。
教学重点
理解乘法分配律的意义。
教学难点
发现与归纳乘法分配律。
教学准备
课件习题卡
教学过程
一、结合实事创设情景,引入新课
1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!
2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?
3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?
二、合作交流,探索发现新知
1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。
板书:乘法分配律
2、发现和归纳乘法分配律
(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?
(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?
(3)生举例并展示,共同验证并读一读式子。
(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?
(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。
3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。
三、小结
同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?
四、分层练习,逐级达标
1、填一填:习题卡。
教学目标
1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2.使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。
教学过程
一、创设比赛场景,在活动中激趣
谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?
A组B组
(1)135×6+65×6(1)(135+65)×6
(2)9×37+9×13(2)9×(37+13)
在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?
A组B组
(1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125
谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)
小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!
谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?
【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】
二、创设活动情境,在合作中探究
1.交流算法,初步感知
(课件出示例题情境图)
谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?
(1)学生的选择方法1:买5件夹克衫和5条裤子
一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的'解题方法,再分别说说两个算式的意义。(课件显示)
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师巡视。
[教师板书:(65+45)×5=65×5+45×5],让学生读一读。
(2)学生的选择方法2:买5件短袖衫和5条裤子
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
[教师板书:(32+45)×5=32×5+45×5]
启发:比较这两个等式,它们有什么相同的地方?
2.深入体验,丰富感知。
现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。
在得数相同的两个算式中间的□里画“=”
(1)(28+16)×7□28×7+16×7
(2)15×39+45×39□(15+45)×39
(3)74×(20+1)□74×20+74
(4)40×50+50×90□40×(50+90)
(5)(125×50)×8□125×8+50×8
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)
谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)
学生举例并组织交流。(比较这些等式是否具有相同的特点)
3.反思学习,揭示规律
提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]
小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)
对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!
【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】
三、巩固内化知识,在实践中运用
谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!
1.大显身手
出示“想想做做”的“想想做做”。
教学目标:
1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。
2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点和难点:
发现并理解乘法分配律。
教学准备:
多媒体课件。
教学过程:
一、复习旧知,作好铺垫
同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)
今天这节课,我们要来研究乘法的另外一个运算定律。
二、联系实际,探究规律
1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!
2.课件例题情景图。
(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)
(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?
指名说出算式,教师随学生回答板书:
(65+45)×5 65×5+45×5
让回答的两名学生说说自己的想法。(即先算的是什么。)
“想想做做”内容
目的要求:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:探索发现规律,体会理解乘法分配律。
教育点: 使学生通过探索发现规律,体会探索的乐趣,从而乐于探索。
教学准备:课件一套
教学过程
一、复习导入
1、口算: 25×4= 125×8 = 25×9×4= 18×25×4=
125×16= 75+25= 89×100= 268×56+256×44= 要求学生说出部分题的口算依据及简算过程;最后一题,学生不会,师快速口算结果,形成悬念。
2、谈话导入
上节课,经过同学们的探索,我们发现了乘法交换律和结合律律,并会应用这些定律进行简便计算,今天咱们继续探索,看能否发现乘法还有没有其它规律。(板书:探索与发现 三)
二、探索新知
1、出示情景图
师:这是工人师傅,为立新幼儿园厨房的某一墙面镶嵌的瓷砖。
引导:
(1)先估算一下,一共贴了多少块瓷砖?
(2)验证估算的结果。
(3)回报验证的方法和结果。
(4)比较算式及结果的异同。
2、师举例让学生验证是不是也有其特征。(40+4)×25和40×25+4×25)
3、观察讨论算式的特点。
计算后,观察比较:
师提问:这两个算式的左边、右边有什么共同特点?每个算式的左右两边有什么特点?两边的结果怎样?
学生可能回答:
(1)两个算式 :左边都是三个数,并且是两个数先加,再和另一个数相成;
右边都是两边相乘,中间相加,并且都乘以同一个乘数。 (2)每个算式 :左边是两个数的和与一个数相乘;
右边是这两个加数都与这个数相乘,再把积相加。
(3)结果:左右两边的结果相同
4、学生举例验证。举例后交流,注意:举例是否符合要求;交流不同算式的共同特点。
5、要求学生用字母表示:(a + b)×c = a×c + b×c
这叫做乘法分配律
( 板书:——乘法分配律)
6、寻找简算原因:学习乘法结合律和交换律可以使计算简便,那么学习了乘法分配律能否简便,比较上面两个算式,看哪边的计算简便,为什么?
7、试一试
利用乘法分配律,计算下列各题
(80+4)×25 34×72+34×28
(做后说做题依据及为什么这样简便?)
三、课堂总结
谈收获。这节课,通过探索你发现了什么?乘法分配律有什么特点?在什么情况下,怎样使计算简便?比较乘法结合律与分配律的异同。
四、练一练
1、判断
(1) (20 + 4)×25 =20 ×4 + 4 ( )
(2) 35×(2 + 20)=35×2×20 ( )
(3) (80 + 4)×125 = 80×125 + 4×125 ( )
2、填一填
(1)(10+7)×6=□×6+ □ ×6 (2)8×(125+9)=8× □ +8×□
(3)7×48+7×52=□× (□+□) (4)25× (4+8)=□× □+□×□
五、六、拓展
思考、讨论:
(1)68×101= (2)98×99 + 98 = (3)189×98 - 89×98=
(讨论后,下节课向老师汇报,不明白的下节课一同研究)
板书:
探索与发现(三)
——乘法分配律
(6 + 4)×9 6×9 + 4×9
= 10×9 = 54 + 36
= 90 = 9
(6 + 4)×9 = 6×9 + 4×9
学生举例: (1)
(2)
(3)
字母表示:(a + b)×c = a×c + b ×c
这叫做乘法分配律
教学内容:北师大版小学数学四年级上册,内容
目的要求:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:探索发现规律,体会理解乘法分配律。
教育点: 使学生通过探索发现规律,体会探索的乐趣,从而乐于探索。
教学思路:
本活动的探索过程与上节课基本相同,也是在活动中发现问题、提出假设、举例验证、建立模型。所以,教学的重点仍应放在探索过程的指导上。
本课首先出示口算题,为新授作准备,最后一题,形成悬念,激发学习兴趣;接着通过出示情景图后,先让学生估一估贴了多少块瓷砖,使学生初步形成印象,也是对前面所学估算的巩固和应用,接着让学生用自己的方法验证估算的结果,学生通过验证过程,从中发现不同的方法可结果是一致的。那么这个发现是否适用不同的数据呢?接着再师生举例验证。验证时,注意指导学生观察算式的特点,学生独立举例后,全班交流,抽象概括出乘法分配律及字母表示的方法。
练习题的设计:
试一试、练一练这两题是基本练习,目的是为了加深理解乘法分配律,通过练习进一步体会运算定律,培养学生的简算意识。拓展题是内容的加深,也是下节课研究的内容。以书本练习为主,尽量淡化不必要的技巧训练。
《乘法分配律》教学设计 篇10知识与技能目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、能够运用乘法分配律进行一些简便的计算。
过程与方法:
培养学生观察、归纳、概括等初步的逻辑思维能力。
情感与价值观:
渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点
理解并掌握乘法分配律
教学难点
乘法分配律的推理及运用
教学准备
多媒体电脑、课件
教学过程
一、用简便方法计算下面各题。
452+199+24838×125×8×3
二、比赛激趣,提出猜想
(1)热身赛。(请看大屏幕,男同学做”运算律”的相关知识资料,并写数学笔记一篇。
《乘法分配律》教学设计 篇15【教学内容】
人教版四年级下册课本36页例3.
【教材与学情定位】
本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。
【设计理念】
1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。
2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?
2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?
【教学目标】
1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。
2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。
【教学重点】
从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。
【教学难点:】
1.理解乘法分配律,体会其优越性。
2.乘法分配律应用中出现的问题如何有效突破。
【教学过程】
1、同学们我们前面学习过两位数乘两位数,
出示:25×14=
算式表示什么意义?你能计算这个题目吗?完成在练习本上。
过程:25
×14
100 25×4
25 25×10
350
问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?
师随生动:14分成的和乘25
指25×14表示什么?14个25是多少
指×25表示什么?14个25是多少?
指10×25+4×25表示什么?14个25是多少?
可以画等号吗?可以
那下面这几个算式表示什么?也可以这样写吗?
【设计意图】
本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。
出示15×12= 23×16=
学生观察:发现都是两位数乘两位数的运算,表示可以。
师指生描述算式的含义并由学生独立完成算式转换。
学生通过验证认识到:
15×12=×25=10×15+2×15
23×16=×23=10×23+6×23
16×25=×25=10×25+6×25
现在还想等吗?
15×12=×25=10×15+2×15
23×14=×23=10×23+4×23
16×25=×25=10×25+6×25
生:相等。
师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?
生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。
师:读一遍等式,体会等式的意义。
【设计意图】
本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。
师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?
生:可以。
2、出示三道练习题目,引导学生探究发现、总结规律
×37=
×23=
×74=
学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?
生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;
左侧三个数,右侧四个数;
……
小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。
【设计意图】
通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。
师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?
生一:×74=10×74+5×74
同意的举手,鼓励的掌声送给他
生二:×52=10×52+7×52
生三:×24=10×24+9×24
生四:×52=52×30+52×2
【设计意图】
学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。
师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。
×51=
×○=
引导出字母形式:
×c=
师:观察和班上和屏幕上的所有式子,你发现了什么?,同桌交流---组内交流,全班交流。
【本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。】
汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍
小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。
字母形式:×c=a×c +b×c
也可以写成a×=a×b+a×c
【设计意图】
本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。
3、看谁算的又对又快:
×27 ○ 4×27+6×27
×39 ○14×39+86×39
×37○100×37+1×37
3×62+5×62+2×62=
集体订正,说学生的做法,怎么做的?怎么想的!
【设计意图】
通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!
4判断:
×5=36×5+27×5
×12=13+79×12
×43=34×61+43
×5=2×5+4×5+3×5+1×5
手势表示,对的举对号,错误的举起十字。
【设计意图】
本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。
5、情景剧:生活中的握手问题:
两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。
【设计意图】
学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。
6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?
师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。
《乘法分配律》教学设计 篇16教学目标:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
3、会用乘法分配律进行一些简便计算
重点难点:
1、 指导探索乘法分配律。
2、 发现并归纳乘法分配律。
方法指导:
通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。
教学流程:
一、激趣导入
(约3分钟)
创设情境,提出问题
1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?
2、学生思考:(1)有几种搭配方案
(2)选择你喜欢的一种方案,并算出总价。
(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)
二、自主学习
(约7分钟)
(一)组内研讨,确定方案
1、组内研讨
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说,你推荐的理由。
(3)说说你推荐的方案,需要花多少钱?你是怎么算的?
三、合作交流
(约10分钟)
1、汇报交流
师:哪一个同学想先来给老师推荐他的方案?
师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?
分别列式解答
师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)
师:这个等式怎么读呢?
生尝试读等式。
(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4
B.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )
2、研究其它方案
由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。
教师板书
一套 4 = 4件上衣 + 4条裤子
(225+75)4 = 2254 + 754
(225+125) 4 = 2254 + 1254
推荐阅读:“乘法分配律”教学设计(精选10篇)《乘法分配律》教学设计(精选13篇)《乘法分配律》教学设计(通用13篇)《乘法分配律》教学设计(通用7篇)“乘法分配律”教学设计《乘法分配律》教学设计乘法分配律教学设计〖教学目标〗1.学会15个生字。会写9个字,能正确读准字音。2.初步学习通过重点词语,读懂句子。3.理解课文内容,感受人对动物的情感,体会人与动物相互依存的关系。能正确、流利、有感情地朗读课文。...
《二泉映月》教案(精选14篇)教材分析: 《二泉映月》是华彦钧(阿炳)的代表作之一 。原曲为二胡独奏,经吴祖强改编,使其成为一 首弦乐合奏曲。华彦钧(1893——1950)民间音乐家,又名阿炳,江苏无锡人。...
《三颗枸杞豆》教学设计(通用17篇)三颗枸杞豆·教学设计●云南昆明 杨国富教学内容《三颗枸杞豆》选自义务教育课程标准实验教科书《语文》(苏教版)七年级下册第二单元。教学理念《语文课程标准》强调,语文学习中的体验、感悟、交往与对话,让学生以自身的经验和体验为基...
《真理诞生于一百个问号之后》教学设计(通用16篇)【教材分析】《真理诞生于一百个问号之后》是六年制小学语文人教课标版教材六班级下册第五单元中的课文,这是一篇精读课文,属于议论文。课文题目真理诞生于一百个问号之后,就是课文的主要观点,课文主要用三个事实论述了只要善于观察、...
《王冕学画》教学设计(精选16篇)设计意图:1、注意以学生的发展为主,倡导新的学习方式。根据课改要求,如何促进学生学习方式的变革是重点,我在本课教学中注意以学生发展为本,使学生在“自主、合作、探究”的学习方式中去解决问题,从而体会主人公的精神品质,产生情感...
《三颗枸杞豆》教案(精选15篇)学习目标:1、领悟文章的语言,理解标题的深刻含义。2、通过课文的学习,明白要珍惜时光,把握金色年华。教学过程:一、导入新课:枸杞——浑身是宝,它的根可以作药,叶可以煮汤,果实枸杞子可以用来炖汤、制酒、做饮料等,作用很广。...
《真理诞生于一百个问号之后》教案(精选13篇)【学习目标】1、学会澡、械等5个生字,正确书写诞生、洗澡、漩涡、花圃、逆时针、司空见惯、无独有偶、见微知著、锲而不舍等词语。2、正确、流利、有感情地朗读课文,摘抄对自己有启发的语句。...
小学二年级语文上册《朱德的扁担》教学实录(精选16篇)师:小朋友们,今天,老师给大家准备了一个谜语,想猜一猜吗?生:想。师:那请听,“生在树上,落在肩上,干活躺下,休息靠墙。”生1:是扁担(出示投影,老师板书:扁担)师:你见过扁担吗?生1:见过,我爷爷用扁担挑草。...
《咏华山》教学设计(精选13篇)教学要求:1、能正确、流利、有感情地朗读课文,背诵课文中的古诗。2、学会10个生字,其中田字格下面要求只识不写的有4个。认识1个偏旁。理解本课新词。...
教案模板